An Invitation to Quantum Cohomology Kontsevich’s Formula for Rational Plane Curves.

This book is an elementary introduction to stable maps and quantum cohomology, starting with an introduction to stable pointed curves, and culminating with a proof of the associativity of the quantum product. The viewpoint is mostly that of enumerative geometry, and the red thread of the exposition...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2007.
Σειρά:Progress in Mathematics ; 249
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03510nam a22005535i 4500
001 978-0-8176-4495-6
003 DE-He213
005 20151204180928.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780817644956  |9 978-0-8176-4495-6 
024 7 |a 10.1007/978-0-8176-4495-6  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
245 1 3 |a An Invitation to Quantum Cohomology  |h [electronic resource] :  |b Kontsevich’s Formula for Rational Plane Curves. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2007. 
300 |a XIV, 162 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 249 
505 0 |a Prologue: Warming Up with Cross Ratios, and the Definition of Moduli Space -- Stable n-pointed Curves -- Stable Maps -- Enumerative Geometry via Stable Maps -- Gromov—Witten Invariants -- Quantum Cohomology. 
520 |a This book is an elementary introduction to stable maps and quantum cohomology, starting with an introduction to stable pointed curves, and culminating with a proof of the associativity of the quantum product. The viewpoint is mostly that of enumerative geometry, and the red thread of the exposition is the problem of counting rational plane curves. Kontsevich's formula is initially established in the framework of classical enumerative geometry, then as a statement about reconstruction for Gromov–Witten invariants, and finally, using generating functions, as a special case of the associativity of the quantum product. Emphasis is given throughout the exposition to examples, heuristic discussions, and simple applications of the basic tools to best convey the intuition behind the subject. The book demystifies these new quantum techniques by showing how they fit into classical algebraic geometry. Some familiarity with basic algebraic geometry and elementary intersection theory is assumed. Each chapter concludes with some historical comments and an outline of key topics and themes as a guide for further study, followed by a collection of exercises that complement the material covered and reinforce computational skills. As such, the book is ideal for self-study, as a text for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory. The book will prove equally useful to graduate students in the classroom setting as to researchers in geometry and physics who wish to learn about the subject. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a K-theory. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Geometry. 
650 0 |a Algebraic topology. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a K-Theory. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Geometry. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817644567 
830 0 |a Progress in Mathematics ;  |v 249 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4495-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)