Complex Variables with Applications

Complex numbers can be viewed in several ways: as an element in a field, as a point in the plane, and as a two-dimensional vector. Examined properly, each perspective provides crucial insight into the interrelations between the complex number system and its parent, the real number system. The author...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ponnusamy, S. (Συγγραφέας), Silverman, Herb (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03682nam a22005295i 4500
001 978-0-8176-4513-7
003 DE-He213
005 20151204191448.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817645137  |9 978-0-8176-4513-7 
024 7 |a 10.1007/978-0-8176-4513-7  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Ponnusamy, S.  |e author. 
245 1 0 |a Complex Variables with Applications  |h [electronic resource] /  |c by S. Ponnusamy, Herb Silverman. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a XIV, 514 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Algebraic and Geometric Preliminaries -- Topological and Analytic Preliminaries -- Bilinear Transformations and Mappings -- Elementary Functions -- Analytic Functions -- Power Series -- Complex Integration and Cauchy’s Theorem -- Applications of Cauchy’s Theorem -- Laurent Series and the Residue Theorem -- Harmonic Functions -- Conformal Mapping and the Riemann Mapping Theorem -- Entire and Meromorphic Functions -- Analytic Continuation. 
520 |a Complex numbers can be viewed in several ways: as an element in a field, as a point in the plane, and as a two-dimensional vector. Examined properly, each perspective provides crucial insight into the interrelations between the complex number system and its parent, the real number system. The authors explore these relationships by adopting both generalization and specialization methods to move from real variables to complex variables, and vice versa, while simultaneously examining their analytic and geometric characteristics, using geometry to illustrate analytic concepts and employing analysis to unravel geometric notions. The engaging exposition is replete with discussions, remarks, questions, and exercises, motivating not only understanding on the part of the reader, but also developing the tools needed to think critically about mathematical problems. This focus involves a careful examination of the methods and assumptions underlying various alternative routes that lead to the same destination. The material includes numerous examples and applications relevant to engineering students, along with some techniques to evaluate various types of integrals. The book may serve as a text for an undergraduate course in complex variables designed for scientists and engineers or for mathematics majors interested in further pursuing the general theory of complex analysis. The only prerequisite is a basic knowledge of advanced calculus. The presentation is also ideally suited for self-study. 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Number Theory. 
650 2 4 |a Geometry. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Silverman, Herb.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817644574 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4513-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)