Topics in the Theory of Algebraic Function Fields

The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Villa Salvador, Gabriel Daniel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Σειρά:Mathematics: Theory & Applications
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04226nam a22005895i 4500
001 978-0-8176-4515-1
003 DE-He213
005 20151204170047.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817645151  |9 978-0-8176-4515-1 
024 7 |a 10.1007/0-8176-4515-2  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Villa Salvador, Gabriel Daniel.  |e author. 
245 1 0 |a Topics in the Theory of Algebraic Function Fields  |h [electronic resource] /  |c by Gabriel Daniel Villa Salvador. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a XVI, 652 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics: Theory & Applications 
505 0 |a Algebraic and Numerical Antecedents -- Algebraic Function Fields of One Variable -- The Riemann-Roch Theorem -- Examples -- Extensions and Galois Theory -- Congruence Function Fields -- The Riemann Hypothesis -- Constant and Separable Extensions -- The Riemann-Hurwitz Formula -- Cryptography and Function Fields -- to Class Field Theory -- Cyclotomic Function Fields -- Drinfeld Modules -- Automorphisms and Galois Theory. 
520 |a The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of numbers, where a function field of one variable is the analogue of a finite extension of Q, the field of rational numbers. The author does not ignore the geometric-analytic aspects of function fields, but leaves an in-depth examination from this perspective to others. Key topics and features: * Contains an introductory chapter on algebraic and numerical antecedents, including transcendental extensions of fields, absolute values on Q, and Riemann surfaces * Focuses on the Riemann–Roch theorem, covering divisors, adeles or repartitions, Weil differentials, class partitions, and more * Includes chapters on extensions, automorphisms and Galois theory, congruence function fields, the Riemann Hypothesis, the Riemann–Hurwitz Formula, applications of function fields to cryptography, class field theory, cyclotomic function fields, and Drinfeld modules * Explains both the similarities and fundamental differences between function fields and number fields * Includes many exercises and examples to enhance understanding and motivate further study The only prerequisites are a basic knowledge of field theory, complex analysis, and some commutative algebra. The book can serve as a text for a graduate course in number theory or an advanced graduate topics course. Alternatively, chapters 1-4 can serve as the base of an introductory undergraduate course for mathematics majors, while chapters 5-9 can support a second course for advanced undergraduates. Researchers interested in number theory, field theory, and their interactions will also find the work an excellent reference. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functions of complex variables. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Analysis. 
650 2 4 |a Commutative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817644802 
830 0 |a Mathematics: Theory & Applications 
856 4 0 |u http://dx.doi.org/10.1007/0-8176-4515-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)