Topics in the Theory of Algebraic Function Fields
The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of...
| Κύριος συγγραφέας: | |
|---|---|
| Συγγραφή απο Οργανισμό/Αρχή: | |
| Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
| Γλώσσα: | English |
| Έκδοση: |
Boston, MA :
Birkhäuser Boston,
2006.
|
| Σειρά: | Mathematics: Theory & Applications
|
| Θέματα: | |
| Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Algebraic and Numerical Antecedents
- Algebraic Function Fields of One Variable
- The Riemann-Roch Theorem
- Examples
- Extensions and Galois Theory
- Congruence Function Fields
- The Riemann Hypothesis
- Constant and Separable Extensions
- The Riemann-Hurwitz Formula
- Cryptography and Function Fields
- to Class Field Theory
- Cyclotomic Function Fields
- Drinfeld Modules
- Automorphisms and Galois Theory.