A Geometric Approach to Differential Forms

The modern subject of differential forms subsumes classical vector calculus. This text presents differential forms from a geometric perspective accessible at the undergraduate level. The book begins with basic concepts such as partial differentiation and multiple integration and gently develops the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bachman, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03465nam a22004695i 4500
001 978-0-8176-4520-5
003 DE-He213
005 20151204190938.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780817645205  |9 978-0-8176-4520-5 
024 7 |a 10.1007/978-0-8176-4520-5  |2 doi 
040 |d GrThAP 
050 4 |a QA614-614.97 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 514.74  |2 23 
100 1 |a Bachman, David.  |e author. 
245 1 2 |a A Geometric Approach to Differential Forms  |h [electronic resource] /  |c by David Bachman. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2006. 
300 |a XVI, 133 p. 39 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Multivariable Calculus -- Parameterizations -- to Forms -- Forms -- Differential Forms -- Differentiation of Forms -- Stokes’ Theorem -- Applications -- Manifolds. 
520 |a The modern subject of differential forms subsumes classical vector calculus. This text presents differential forms from a geometric perspective accessible at the undergraduate level. The book begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The author approaches the subject with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. This facilitates the development of differential forms without assuming a background in linear algebra. Throughout the text, emphasis is placed on applications in 3 dimensions, but all definitions are given so as to be easily generalized to higher dimensions. A centerpiece of the text is the generalized Stokes' theorem. Although this theorem implies all of the classical integral theorems of vector calculus, it is far easier for students to both comprehend and remember. The text is designed to support three distinct course tracks: the first as the primary textbook for third semester (multivariable) calculus, suitable for anyone with a year of calculus; the second is aimed at students enrolled in vector calculus; while the third targets advanced undergraduates and beginning graduate students in physics or mathematics, touching on more advanced topics such as Maxwell's equations, foliation theory, and cohomology. Containing excellent motivation, numerous illustrations and solutions to selected problems in an appendix, the material has been tested in the classroom along all three potential course tracks. 
650 0 |a Mathematics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Functions of real variables. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Real Functions. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817644994 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4520-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)