An Invitation to Variational Methods in Differential Equations

This book is a short introductory text to variational techniques with applications to differential equations. It presents a sampling of topics in critical point theory with applications to existence and multiplicity of solutions in nonlinear problems involving ordinary differential equations (ODEs)...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Costa, David G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02934nam a22004575i 4500
001 978-0-8176-4536-6
003 DE-He213
005 20151204144148.0
007 cr nn 008mamaa
008 100428s2007 xxu| s |||| 0|eng d
020 |a 9780817645366  |9 978-0-8176-4536-6 
024 7 |a 10.1007/978-0-8176-4536-6  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Costa, David G.  |e author. 
245 1 3 |a An Invitation to Variational Methods in Differential Equations  |h [electronic resource] /  |c by David G. Costa. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2007. 
300 |a XII, 138 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Critical Points Via Minimization -- The Deformation Theorem -- The Mountain-Pass Theorem -- The Saddle-Point Theorem -- Critical Points under Constraints -- A Duality Principle -- Critical Points under Symmetries -- Problems with an S1-Symmetry -- Problems with Lack of Compactness -- Lack of Compactness for Bounded ?. 
520 |a This book is a short introductory text to variational techniques with applications to differential equations. It presents a sampling of topics in critical point theory with applications to existence and multiplicity of solutions in nonlinear problems involving ordinary differential equations (ODEs) and partial differential equations (PDEs). Five simple problems in ODEs which illustrate existence of solutions from a variational point of view are introduced in the first chapter. These problems set the stage for the topics covered, including minimization, deformation results, the mountain-pass theorem, the saddle-point theorem, critical points under constraints, a duality principle, critical points in the presence of symmetry, and problems with lack of compactness. Each topic is presented in a straightforward manner, and followed by one or two illustrative applications. The concise, straightforward, user-friendly approach of this textbook will appeal to graduate students and researchers interested in differential equations, analysis, and functional analysis. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817645359 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4536-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)