Polynomial Convexity

This comprehensive monograph is devoted to the study of polynomially convex sets, which play an important role in the theory of functions of several complex variables. Important features of Polynomial Convexity: *Presents the general properties of polynomially convex sets with particular attention t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Stout, Edgar Lee (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2007.
Σειρά:Progress in Mathematics ; 261
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03270nam a22005415i 4500
001 978-0-8176-4538-0
003 DE-He213
005 20151204172115.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780817645380  |9 978-0-8176-4538-0 
024 7 |a 10.1007/978-0-8176-4538-0  |2 doi 
040 |d GrThAP 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.94  |2 23 
100 1 |a Stout, Edgar Lee.  |e author. 
245 1 0 |a Polynomial Convexity  |h [electronic resource] /  |c by Edgar Lee Stout. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2007. 
300 |a X, 439 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 261 
505 0 |a Some General Properties of Polynomially Convex Sets -- Sets of Finite Length -- Sets of Class A1 -- Further Results -- Approximation -- Varieties in Strictly Pseudoconvex Domains -- Examples and Counterexamples. 
520 |a This comprehensive monograph is devoted to the study of polynomially convex sets, which play an important role in the theory of functions of several complex variables. Important features of Polynomial Convexity: *Presents the general properties of polynomially convex sets with particular attention to the theory of the hulls of one-dimensional sets. *Motivates the theory with numerous examples and counterexamples, which serve to illustrate the general theory and to delineate its boundaries. *Examines in considerable detail questions of uniform approximation, especially on totally real sets, for the most part on compact sets but with some attention to questions of global approximation on noncompact sets. *Discusses important applications, e.g., to the study of analytic varieties and to the theory of removable singularities for CR functions. *Requires of the reader a solid background in real and complex analysis together with some previous experience with the theory of functions of several complex variables as well as the elements of functional analysis. This beautiful exposition of a rich and complex theory, which contains much material not available in other texts, is destined to be the standard reference for many years, and will appeal to all those with an interest in multivariate complex analysis. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817645373 
830 0 |a Progress in Mathematics ;  |v 261 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4538-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)