Linear Partial Differential Equations for Scientists and Engineers

One of the most fundamental and active areas in mathematics, the theory of partial differential equations (PDEs) is essential in the modeling of natural phenomena. PDEs have a wide range of interesting and important applications in every branch of applied mathematics, physics, and engineering, inclu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Myint-U, Tyn (Συγγραφέας), Debnath, Lokenath (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2007.
Έκδοση:Fourth Edition.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04791nam a22005655i 4500
001 978-0-8176-4560-1
003 DE-He213
005 20151204152611.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780817645601  |9 978-0-8176-4560-1 
024 7 |a 10.1007/978-0-8176-4560-1  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Myint-U, Tyn.  |e author. 
245 1 0 |a Linear Partial Differential Equations for Scientists and Engineers  |h [electronic resource] /  |c by Tyn Myint-U, Lokenath Debnath. 
250 |a Fourth Edition. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2007. 
300 |a XXII, 778 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a First-Order, Quasi-Linear Equations and Method of Characteristics -- Mathematical Models -- Classification of Second-Order Linear Equations -- The Cauchy Problem and Wave Equations -- Fourier Series and Integrals with Applications -- Method of Separation of Variables -- Eigenvalue Problems and Special Functions -- Boundary-Value Problems and Applications -- Higher-Dimensional Boundary-Value Problems -- Green’s Functions and Boundary-Value Problems -- Integral Transform Methods with Applications -- Nonlinear Partial Differential Equations with Applications -- Numerical and Approximation Methods -- Tables of Integral Transforms. 
520 |a One of the most fundamental and active areas in mathematics, the theory of partial differential equations (PDEs) is essential in the modeling of natural phenomena. PDEs have a wide range of interesting and important applications in every branch of applied mathematics, physics, and engineering, including fluid dynamics, elasticity, and optics. This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books, including conservation laws, the spherical wave equation, the cylindrical wave equation, higher-dimensional boundary-value problems, the finite element method, fractional partial differential equations, and nonlinear partial differential equations with applications. Key features include: * Applications to a wide variety of physical problems in numerous interdisciplinary areas * Over 900 worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry * Historical comments on partial differential equations * Solutions and hints to selected exercises * A comprehensive bibliography—comprised of many standard texts and reference books, as well as a set of selected classic and recent papers—for readers interested in learning more about the modern treatment of the subject Linear Partial Differential Equations for Scientists and Engineers, Fourth Edition will primarily serve as a textbook for the first two courses in PDEs, or in a course on advanced engineering mathematics. The book may also be used as a reference for graduate students, researchers, and professionals in modern applied mathematics, mathematical physics, and engineering. Readers will gain a solid mathematical background in PDEs, sufficient to start interdisciplinary collaborative research in a variety of fields. Also by L. Debnath: Nonlinear Partial Differential Equations for Scientists and Engineers, Second Edition, ISBN 0-8176-4323-0. . 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Debnath, Lokenath.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643935 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4560-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)