A Beginner’s Guide to Graph Theory

Graph theory continues to be one of the fastest growing areas of modern mathematics because of its wide applicability in such diverse disciplines as computer science, engineering, chemistry, management science, social science, and resource planning. Graphs arise as mathematical models in these field...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wallis, W. D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2007.
Έκδοση:Second Edition.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04163nam a22005535i 4500
001 978-0-8176-4580-9
003 DE-He213
005 20151204161915.0
007 cr nn 008mamaa
008 100505s2007 xxu| s |||| 0|eng d
020 |a 9780817645809  |9 978-0-8176-4580-9 
024 7 |a 10.1007/978-0-8176-4580-9  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 511.1  |2 23 
100 1 |a Wallis, W. D.  |e author. 
245 1 2 |a A Beginner’s Guide to Graph Theory  |h [electronic resource] /  |c by W. D. Wallis. 
250 |a Second Edition. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2007. 
300 |a XX, 260 p. 160 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Graphs -- Walks, Paths and Cycles -- Connectivity -- Trees -- Linear Spaces Associated with Graphs -- Factorizations -- Graph Colorings -- Planarity -- Labeling -- Ramsey Theory -- Digraphs -- Critical Paths -- Flows in Networks -- Computational Considerations -- Communications Networks and Small-Worlds. 
520 |a Graph theory continues to be one of the fastest growing areas of modern mathematics because of its wide applicability in such diverse disciplines as computer science, engineering, chemistry, management science, social science, and resource planning. Graphs arise as mathematical models in these fields, and the theory of graphs provides a spectrum of methods of proof. This concisely written textbook is intended for an introductory course in graph theory for undergraduate mathematics majors or advanced undergraduate and graduate students from the many fields that benefit from graph-theoretic applications. Key features: * Introductory chapters present the main ideas and topics in graph theory—walks, paths and cycles, radius, diameter, eccentricity, cuts and connectivity, trees * Subsequent chapters examine specialized topics and applications * Numerous examples and illustrations * Comprehensive index and bibliography, with suggested literature for more advanced material New to the second edition: * New chapters on labeling and on communications networks and small-worlds * Expanded beginner’s material in the early chapters, including more examples, exercises, hints and solutions to key problems * Many additional changes, improvements, and corrections throughout resulting from classroom use and feedback Striking a balance between a theoretical and practical approach with a distinctly applied flavor, this gentle introduction to graph theory consists of carefully chosen topics to develop graph-theoretic reasoning for a mixed audience. Familiarity with the basic concepts of set theory, along with some background in matrices and algebra, and a little mathematical maturity are the only prerequisites. ----- From a review of the first edition: "Altogether the book gives a comprehensive introduction to graphs, their theory and their application…The use of the text is optimized when the exercises are solved. The obtained skills improve understanding of graph theory as well… It is very useful that the solutions of these exercises are collected in an appendix." —Simulation News Europe. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Matrix theory. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mathematical logic. 
650 0 |a Discrete mathematics. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Algebra. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817644840 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4580-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)