Integrable Systems in Celestial Mechanics

This work presents a unified treatment of three important integrable problems relevant to both Celestial and Quantum Mechanics. Under discussion are the Kepler (two-body) problem and the Euler (two-fixed center) problem, the latter being the more complex and more instructive, as it exhibits a richer...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ó Mathúna, Diarmuid (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2008.
Σειρά:Progress in Mathematical Physics ; 51
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04049nam a22005775i 4500
001 978-0-8176-4595-3
003 DE-He213
005 20151204170446.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780817645953  |9 978-0-8176-4595-3 
024 7 |a 10.1007/978-0-8176-4595-3  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Ó Mathúna, Diarmuid.  |e author. 
245 1 0 |a Integrable Systems in Celestial Mechanics  |h [electronic resource] /  |c by Diarmuid Ó Mathúna. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2008. 
300 |a X, 234 p. 24 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematical Physics ;  |v 51 
505 0 |a General Introduction -- Lagrangian Mechanics -- The Kepler Problem -- The Euler Problem I — Planar Case -- The Euler Problem II — Three-dimensional Case -- The Earth Satellite — General Analysis -- The Earth Satellite — Some Special Orbits. 
520 |a This work presents a unified treatment of three important integrable problems relevant to both Celestial and Quantum Mechanics. Under discussion are the Kepler (two-body) problem and the Euler (two-fixed center) problem, the latter being the more complex and more instructive, as it exhibits a richer and more varied solution structure. Further, because of the interesting investigations by the 20th century mathematical physicist J.P. Vinti, the Euler problem is now recognized as being intimately linked to the Vinti (Earth-satellite) problem. Here the analysis of these problems is shown to follow a definite shared pattern yielding exact forms for the solutions. A central feature is the detailed treatment of the planar Euler problem where the solutions are expressed in terms of Jacobian elliptic functions, yielding analytic representations for the orbits over the entire parameter range. This exhibits the rich and varied solution patterns that emerge in the Euler problem, which are illustrated in the appendix. A comparably detailed analysis is performed for the Earth-satellite (Vinti) problem. Key features: * Highlights shared features in the unified treatment of the Kepler, Euler, and Vinti problems * Raises challenges in analysis and astronomy, placing this trio of problems in the modern context * Includes a full analysis of the planar Euler problem * Highlights the complex and surprising orbit patterns that arise from the Euler problem * Provides a detailed analysis and solution for the Earth-satellite problem The analysis and results in this work will be of interest to graduate students in mathematics and physics (including physical chemistry) and researchers concerned with the general areas of dynamical systems, statistical mechanics, and mathematical physics and has direct application to celestial mechanics, astronomy, orbital mechanics, and aerospace engineering. 
650 0 |a Physics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Mechanics. 
650 0 |a Astronomy. 
650 0 |a Astrophysics. 
650 0 |a Cosmology. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Mechanics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Astronomy, Astrophysics and Cosmology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817640965 
830 0 |a Progress in Mathematical Physics ;  |v 51 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4595-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)