Advanced Algebra Along with a companion volume Basic Algebra /

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole. Key topics and fea...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Knapp, Anthony W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2008.
Σειρά:Cornerstones,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04101nam a22005775i 4500
001 978-0-8176-4613-4
003 DE-He213
005 20151218142127.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780817646134  |9 978-0-8176-4613-4 
024 7 |a 10.1007/978-0-8176-4613-4  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Knapp, Anthony W.  |e author. 
245 1 0 |a Advanced Algebra  |h [electronic resource] :  |b Along with a companion volume Basic Algebra /  |c by Anthony W. Knapp. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2008. 
300 |a XXV, 730 p. 46 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cornerstones,  |x 2197-182X 
505 0 |a Transition to Modern Number Theory -- Wedderburn–Artin Ring Theory -- Brauer Group -- Homological Algebra -- Three Theorems in Algebraic Number Theory -- Reinterpretation with Adeles and Ideles -- Infinite Field Extensions -- Background for Algebraic Geometry -- The Number Theory of Algebraic Curves -- Methods of Algebraic Geometry. 
520 |a Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole. Key topics and features of Advanced Algebra: *Topics build upon the linear algebra, group theory, factorization of ideals, structure of fields, Galois theory, and elementary theory of modules as developed in Basic Algebra *Chapters treat various topics in commutative and noncommutative algebra, providing introductions to the theory of associative algebras, homological algebra, algebraic number theory, and algebraic geometry *Sections in two chapters relate the theory to the subject of Gröbner bases, the foundation for handling systems of polynomial equations in computer applications *Text emphasizes connections between algebra and other branches of mathematics, particularly topology and complex analysis *Book carries on two prominent themes recurring in Basic Algebra: the analogy between integers and polynomials in one variable over a field, and the relationship between number theory and geometry *Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems *The exposition proceeds from the particular to the general, often providing examples well before a theory that incorporates them; it includes blocks of problems that illuminate aspects of the text and introduce additional topics Advanced Algebra presents its subject matter in a forward-looking way that takes into account the historical development of the subject. It is suitable as a text for the more advanced parts of a two-semester first-year graduate sequence in algebra. It requires of the reader only a familiarity with the topics developed in Basic Algebra. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
650 2 4 |a Category Theory, Homological Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817645229 
830 0 |a Cornerstones,  |x 2197-182X 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4613-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)