Planar Ising Correlations

This book examines in detail the correlations for the two-dimensional Ising model in the infinite volume or thermodynamic limit and the sub- and super-critical continuum scaling limits. Steady progress in recent years has been made in understanding the special mathematical features of certain exactl...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Palmer, John (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2007.
Σειρά:Progress in Mathematical Physics ; 49
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03085nam a22005055i 4500
001 978-0-8176-4620-2
003 DE-He213
005 20151204180450.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780817646202  |9 978-0-8176-4620-2 
024 7 |a 10.1007/978-0-8176-4620-2  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Palmer, John.  |e author. 
245 1 0 |a Planar Ising Correlations  |h [electronic resource] /  |c by John Palmer. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2007. 
300 |a XII, 372 p. 30 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematical Physics ;  |v 49 
505 0 |a The Thermodynamic Limit -- The Spontaneous Magnetization and Two-Point Spin Correlation -- Scaling Limits -- The One-Point Green Function -- Scaling Functions as Tau Functions -- Deformation Analysis of Tau Functions. 
520 |a This book examines in detail the correlations for the two-dimensional Ising model in the infinite volume or thermodynamic limit and the sub- and super-critical continuum scaling limits. Steady progress in recent years has been made in understanding the special mathematical features of certain exactly solvable models in statistical mechanics and quantum field theory, including the scaling limits of the 2-D Ising (lattice) model, and more generally, a class of 2-D quantum fields known as holonomic fields. New results have made it possible to obtain a detailed nonperturbative analysis of the multi-spin correlations. In particular, the book focuses on deformation analysis of the scaling functions of the Ising model. This self-contained work also includes discussions on Pfaffians, elliptic uniformization, the Grassmann calculus for spin representations, Weiner--Hopf factorization, determinant bundles, and monodromy preserving deformations. This work explores the Ising model as a microcosm of the confluence of interesting ideas in mathematics and physics, and will appeal to graduate students, mathematicians, and physicists interested in the mathematics of statistical mechanics and quantum field theory. 
650 0 |a Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Physics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817642488 
830 0 |a Progress in Mathematical Physics ;  |v 49 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4620-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)