Numerical Methods for Controlled Stochastic Delay Systems

The Markov chain approximation methods are widely used for the numerical solution of nonlinear stochastic control problems in continuous time. This book extends the methods to stochastic systems with delays. Because such problems are infinite-dimensional, many new issues arise in getting good numeri...

Full description

Bibliographic Details
Main Author: Kushner, Harold J. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Boston : Birkhäuser Boston, 2008.
Series:Systems & Control: Foundations & Applications
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 04307nam a22006135i 4500
001 978-0-8176-4621-9
003 DE-He213
005 20151204175723.0
007 cr nn 008mamaa
008 110406s2008 xxu| s |||| 0|eng d
020 |a 9780817646219  |9 978-0-8176-4621-9 
024 7 |a 10.1007/978-0-8176-4621-9  |2 doi 
040 |d GrThAP 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Kushner, Harold J.  |e author. 
245 1 0 |a Numerical Methods for Controlled Stochastic Delay Systems  |h [electronic resource] /  |c by Harold J. Kushner. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2008. 
300 |a XX, 282 p. 37 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Systems & Control: Foundations & Applications 
505 0 |a Examples and Introduction -- Weak Convergence and Martingales -- Stochastic Delay Equations: Models -- Approximations to the Dynamical Models -- The Ergodic Cost Problem -- Markov Chain Approximations: Introduction -- Markov Chain Approximations: Path and Control Delayed. -- Path and Control Delayed: Continued -- A Wave Equation Approach. 
520 |a The Markov chain approximation methods are widely used for the numerical solution of nonlinear stochastic control problems in continuous time. This book extends the methods to stochastic systems with delays. Because such problems are infinite-dimensional, many new issues arise in getting good numerical approximations and in the convergence proofs. Useful forms of numerical algorithms and system approximations are developed in this work, and the convergence proofs are given. All of the usual cost functions are treated as well as singular and impulsive controls. A major concern is on representations and approximations that use minimal memory. Features and topics include: * Surveys properties of the most important stochastic dynamical models, including singular control, and those for diffusion and reflected diffusion models. * Gives approximations to the dynamical models that simplify the numerical problem, but have only small effects on the behavior. * Develops an ergodic theory for reflected diffusions with delays, as well as model simplifications useful for numerical approximations for average cost per unit time problems. * Provides numerical algorithms for models with delays in the path, or path and control, with reduced memory requirements. * Develops transformations of the problem that yield more efficient approximations when the control, driving Wiener process, and/or reflection processes might be delayed, as well as the path. * Presents examples with applications to control and modern communications systems. The book is the first on the subject and will be of interest to all those who work with stochastic delay equations and whose main interest is in either the use of the algorithms or the underlying mathematics. An excellent resource for graduate students, researchers, and practitioners, the work may be used as a graduate-level textbook for a special topics course or seminar on numerical methods in stochastic control. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a System theory. 
650 0 |a Numerical analysis. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Analysis. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817645342 
830 0 |a Systems & Control: Foundations & Applications 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4621-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)