Modern Differential Geometry in Gauge Theories Yang¿Mills Fields, Volume II /

Differential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author’s perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead, an ax...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mallios, Anastasios (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2010.
Έκδοση:1.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03757nam a22005895i 4500
001 978-0-8176-4634-9
003 DE-He213
005 20151109191213.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 |a 9780817646349  |9 978-0-8176-4634-9 
024 7 |a 10.1007/978-0-8176-4634-9  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Mallios, Anastasios.  |e author. 
245 1 0 |a Modern Differential Geometry in Gauge Theories  |h [electronic resource] :  |b Yang¿Mills Fields, Volume II /  |c by Anastasios Mallios. 
250 |a 1. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2010. 
300 |a XIX, 234 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Yang–Mills Theory:General Theory -- Abstract Yang#x2013;Mills Theory -- Moduli Spaces of -Connections of Yang#x2013;Mills Fields -- Geometry of Yang#x2013;Mills -Connections -- General Relativity -- General Relativity, as a Gauge Theory. Singularities. 
520 |a Differential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author’s perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead, an axiomatic treatment of differential geometry is presented via sheaf theory (geometry) and sheaf cohomology (analysis). Using vector sheaves, in place of bundles, based on arbitrary topological spaces, this unique approach in general furthers new perspectives and calculations that generate unexpected potential applications. Modern Differential Geometry in Gauge Theories is a two-volume research monograph that systematically applies a sheaf-theoretic approach to such physical theories as gauge theory. Beginning with Volume 1, the focus is on Maxwell fields. All the basic concepts of this mathematical approach are formulated and used thereafter to describe elementary particles, electromagnetism, and geometric prequantization. Maxwell fields are fully examined and classified in the language of sheaf theory and sheaf cohomology. Continuing in Volume 2, this sheaf-theoretic approach is applied to Yang–Mills fields in general. The text contains a wealth of detailed and rigorous computations and will appeal to mathematicians and physicists, along with advanced undergraduate and graduate students, interested in applications of differential geometry to physical theories such as general relativity, elementary particle physics and quantum gravity. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential geometry. 
650 0 |a Physics. 
650 0 |a Optics. 
650 0 |a Electrodynamics. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Optics and Electrodynamics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817643799 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4634-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)