Global Propagation of Regular Nonlinear Hyperbolic Waves

This monograph describes global propagation of regular nonlinear hyperbolic waves described by first-order quasilinear hyperbolic systems in one dimension. The exposition is clear, concise, and unfolds systematically, beginning with introductory material which leads to the original research of the a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Tatsien, Li (Συγγραφέας), Libin, Wang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2009.
Έκδοση:1st.
Σειρά:Progress in Nonlinear Differential Equations and Their Applications ; 76
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03568nam a22006135i 4500
001 978-0-8176-4635-6
003 DE-He213
005 20151204155001.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780817646356  |9 978-0-8176-4635-6 
024 7 |a 10.1007/b78335  |2 doi 
040 |d GrThAP 
050 4 |a QC793-793.5 
050 4 |a QC174.45-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI051000  |2 bisacsh 
082 0 4 |a 539.72  |2 23 
100 1 |a Tatsien, Li.  |e author. 
245 1 0 |a Global Propagation of Regular Nonlinear Hyperbolic Waves  |h [electronic resource] /  |c by Li Tatsien, Wang Libin. 
250 |a 1st. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2009. 
300 |a X, 252 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 76 
505 0 |a Preliminaries -- The Cauchy Problem -- The Cauchy Problem (Continued) -- Cauchy Problem on a Semibounded Initial Axis -- One-Sided Mixed Initial-Boundary Value Problem -- Generalized Riemann Problem -- Generalized Nonlinear Initial-Boundary Riemann Problem -- Inverse Generalized Riemann Problem -- Inverse Piston Problem. 
520 |a This monograph describes global propagation of regular nonlinear hyperbolic waves described by first-order quasilinear hyperbolic systems in one dimension. The exposition is clear, concise, and unfolds systematically, beginning with introductory material which leads to the original research of the authors. Using the concept of weak linear degeneracy and the method of (generalized) normalized coordinates, this book establishes a systematic theory for the global existence and blowup mechanism of regular nonlinear hyperbolic waves with small amplitude for the Cauchy problem, the Cauchy problem on a semi-bounded initial data, the one-sided mixed initial-boundary value problem, the generalized Riemann problem, the generalized nonlinear initial-boun dary Riemann problem, and some related inverse problems. Motivation is given via a number of physical examples from the areas of elastic materials, one-dimensional gas dynamics, and waves. Global Propagation of Regular Nonlinear Hyperbolic Waves will stimulate further research and help readers further understand important aspects and recent progress of regular nonlinear hyperbolic waves. 
650 0 |a Physics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Physics. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Analysis. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Libin, Wang.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817642440 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 76 
856 4 0 |u http://dx.doi.org/10.1007/b78335  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)