Eisenstein Series and Applications

Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas that are not usually in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Gan, Wee Teck (Επιμελητής έκδοσης), Kudla, Stephen S. (Επιμελητής έκδοσης), Tschinkel, Yuri (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2008.
Σειρά:Progress in Mathematics ; 258
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03916nam a22005775i 4500
001 978-0-8176-4639-4
003 DE-He213
005 20151125192109.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780817646394  |9 978-0-8176-4639-4 
024 7 |a 10.1007/978-0-8176-4639-4  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
245 1 0 |a Eisenstein Series and Applications  |h [electronic resource] /  |c edited by Wee Teck Gan, Stephen S. Kudla, Yuri Tschinkel. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2008. 
300 |a X, 314 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 258 
505 0 |a Twisted Weyl Group Multiple Dirichlet Series: The Stable Case -- A Topological Model for Some Summand of the Eisenstein Cohomology of Congruence Subgroups -- The Saito-Kurokawa Space of PGSp4 and Its Transfer to Inner Forms -- Values of Archimedean Zeta Integrals for Unitary Groups -- A Simple Proof of Rationality of Siegel-Weil Eisenstein Series -- Residues of Eisenstein Series and Related Problems -- Some Extensions of the Siegel-Weil Formula -- A Remark on Eisenstein Series -- Arithmetic Aspects of the Theta Correspondence and Periods of Modular Forms -- Functoriality and Special Values of L-Functions -- Bounds for Matrix Coefficients and Arithmetic Applications. 
520 |a Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas that are not usually interacting with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series. The exposition focuses on the common structural properties of Eisenstein series occurring in many related applications that have arisen in several recent developments in arithmetic: Arakelov intersection theory on Shimura varieties, special values of L-functions and Iwasawa theory, and equidistribution of rational/integer points on homogeneous varieties. Key questions that are considered include: Is it possible to identify a class of Eisenstein series whose Fourier coefficients (resp. special values) encode significant arithmetic information? Do such series fit into p-adic families? Are the Eisenstein series that arise in counting problems of this type? Contributors include: B. Brubaker, D. Bump, J. Franke, S. Friedberg, W.T. Gan, P. Garrett, M. Harris, D. Jiang, S.S. Kudla, E. Lapid, K. Prasanna, A. Raghuram, F. Shahidi, R. Takloo-Bighash. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
700 1 |a Gan, Wee Teck.  |e editor. 
700 1 |a Kudla, Stephen S.  |e editor. 
700 1 |a Tschinkel, Yuri.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817644963 
830 0 |a Progress in Mathematics ;  |v 258 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4639-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)