Eisenstein Series and Applications
Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas that are not usually in...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston, MA :
Birkhäuser Boston,
2008.
|
Σειρά: | Progress in Mathematics ;
258 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Twisted Weyl Group Multiple Dirichlet Series: The Stable Case
- A Topological Model for Some Summand of the Eisenstein Cohomology of Congruence Subgroups
- The Saito-Kurokawa Space of PGSp4 and Its Transfer to Inner Forms
- Values of Archimedean Zeta Integrals for Unitary Groups
- A Simple Proof of Rationality of Siegel-Weil Eisenstein Series
- Residues of Eisenstein Series and Related Problems
- Some Extensions of the Siegel-Weil Formula
- A Remark on Eisenstein Series
- Arithmetic Aspects of the Theta Correspondence and Periods of Modular Forms
- Functoriality and Special Values of L-Functions
- Bounds for Matrix Coefficients and Arithmetic Applications.