Conformal Groups in Geometry and Spin Structures

Conformal groups play a key role in geometry and spin structures. This book provides a self-contained overview of this important area of mathematical physics, beginning with its origins in the works of Cartan and Chevalley and progressing to recent research in spinors and conformal geometry. Key top...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Anglès, Pierre (Editor)
Format: Electronic eBook
Language:English
Published: Boston, MA : Birkhäuser Boston, 2008.
Series:Progress in Mathematical Physics ; 50
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03420nam a22005775i 4500
001 978-0-8176-4643-1
003 DE-He213
005 20151204162633.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780817646431  |9 978-0-8176-4643-1 
024 7 |a 10.1007/978-0-8176-4643-1  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
245 1 0 |a Conformal Groups in Geometry and Spin Structures  |h [electronic resource] /  |c edited by Pierre Anglès. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2008. 
300 |a XXVIII, 284 p. 40 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematical Physics ;  |v 50 
505 0 |a Classic Groups: Clifford Algebras, Projective Quadrics, and Spin Groups -- Real Conformal Spin Structures -- Pseudounitary Conformal Spin Structures. 
520 |a Conformal groups play a key role in geometry and spin structures. This book provides a self-contained overview of this important area of mathematical physics, beginning with its origins in the works of Cartan and Chevalley and progressing to recent research in spinors and conformal geometry. Key topics and features: * Focuses initially on the basics of Clifford algebras * Studies the spaces of spinors for some even Clifford algebras * Examines conformal spin geometry, beginning with an elementary study of the conformal group of the Euclidean plane * Treats covering groups of the conformal group of a regular pseudo-Euclidean space, including a section on the complex conformal group * Introduces conformal flat geometry and conformal spinoriality groups, followed by a systematic development of riemannian or pseudo-riemannian manifolds having a conformal spin structure * Discusses links between classical spin structures and conformal spin structures in the context of conformal connections * Examines pseudo-unitary spin structures and pseudo-unitary conformal spin structures using the Clifford algebra associated with the classical pseudo-unitary space * Ample exercises with many hints for solutions * Comprehensive bibliography and index This text is suitable for a course in mathematical physics at the advanced undergraduate and graduate levels. It will also benefit researchers as a reference text. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Group theory. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Geometry. 
650 0 |a Number theory. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Number Theory. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
700 1 |a Anglès, Pierre.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817635121 
830 0 |a Progress in Mathematical Physics ;  |v 50 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4643-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)