Representation Theory and Automorphic Forms

This volume addresses the interplay between representation theory and automorphic forms. The invited papers, written by leading mathematicians, track recent progress in the ever expanding fields of representation theory and automorphic forms, and their association with number theory and differential...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kobayashi, Toshiyuki (Επιμελητής έκδοσης), Schmid, Wilfried (Επιμελητής έκδοσης), Yang, Jae-Hyun (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2008.
Σειρά:Progress in Mathematics ; 255
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02953nam a22005295i 4500
001 978-0-8176-4646-2
003 DE-He213
005 20151204191704.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780817646462  |9 978-0-8176-4646-2 
024 7 |a 10.1007/978-0-8176-4646-2  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
245 1 0 |a Representation Theory and Automorphic Forms  |h [electronic resource] /  |c edited by Toshiyuki Kobayashi, Wilfried Schmid, Jae-Hyun Yang. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2008. 
300 |a VIII, 214 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 255 
505 0 |a Irreducibility and Cuspidality -- On Liftings of Holomorphic Modular Forms -- Multiplicity-free Theorems of the Restrictions of Unitary Highest Weight Modules with respect to Reductive Symmetric Pairs -- The Rankin–Selberg Method for Automorphic Distributions -- Langlands Functoriality Conjecture and Number Theory -- Discriminant of Certain K3 Surfaces. 
520 |a This volume addresses the interplay between representation theory and automorphic forms. The invited papers, written by leading mathematicians, track recent progress in the ever expanding fields of representation theory and automorphic forms, and their association with number theory and differential geometry. Representation theory relates to number theory through the Langlands program, which conjecturally connects algebraic extensions of number fields to automorphic representations and L-functions. These are the subject of several of the papers. Multiplicity-free representations constitute another subject, which is approached geometrically via the notion of visible group actions on complex manifolds. Both graduate students and researchers will find inspiration in this volume. Contributors: T. Ikeda, T. Kobayashi, S. Miller, D. Ramakrishnan, W. Schmid, F. Shahidi, K. Yoshikawa. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Differential geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Number Theory. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Kobayashi, Toshiyuki.  |e editor. 
700 1 |a Schmid, Wilfried.  |e editor. 
700 1 |a Yang, Jae-Hyun.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817645052 
830 0 |a Progress in Mathematics ;  |v 255 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4646-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)