Stability of Dynamical Systems Continuous, Discontinuous, and Discrete Systems /

In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Michel, Anthony N. (Συγγραφέας), Hou, Ling (Συγγραφέας), Liu, Derong (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2008.
Σειρά:Systems&Control: Foundations&Applications
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04886nam a22006255i 4500
001 978-0-8176-4649-3
003 DE-He213
005 20151204152040.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780817646493  |9 978-0-8176-4649-3 
024 7 |a 10.1007/978-0-8176-4649-3  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Michel, Anthony N.  |e author. 
245 1 0 |a Stability of Dynamical Systems  |h [electronic resource] :  |b Continuous, Discontinuous, and Discrete Systems /  |c by Anthony N. Michel, Ling Hou, Derong Liu. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2008. 
300 |a XII, 508 p. 44 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Systems&Control: Foundations&Applications 
505 0 |a Dynamical Systems -- Fundamental Theory: The Principal Stability and Boundedness Results on Metric Spaces -- Fundamental Theory:Specialized Stability and Boundedness Results on Metric Spaces -- Applications to a Class of Discrete-Event Systems -- Finite-Dimensional Dynamical Systems -- Finite-Dimensional Dynamical Systems: Specialized Results -- Applications to Finite-Dimensional Dynamical Systems -- Infinite-Dimensional Dynamical Systems. 
520 |a In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a System theory. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Difference and Functional Equations. 
700 1 |a Hou, Ling.  |e author. 
700 1 |a Liu, Derong.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817644864 
830 0 |a Systems&Control: Foundations&Applications 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4649-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)