Spectral Theory of Infinite-Area Hyperbolic Surfaces

This book introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of dramatic recent developments in the field. These developments were prompted by advances in geometric scattering theory in the early 1990s which provided new tools for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Borthwick, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2007.
Σειρά:Progress in Mathematics ; 256
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03394nam a22005295i 4500
001 978-0-8176-4653-0
003 DE-He213
005 20151204152254.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780817646530  |9 978-0-8176-4653-0 
024 7 |a 10.1007/978-0-8176-4653-0  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Borthwick, David.  |e author. 
245 1 0 |a Spectral Theory of Infinite-Area Hyperbolic Surfaces  |h [electronic resource] /  |c by David Borthwick. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2007. 
300 |a XI, 355 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 256 
505 0 |a Hyperbolic Surfaces -- Compact and Finite-Area Surfaces -- Spectral Theory for the Hyperbolic Plane -- Model Resolvents for Cylinders -- TheResolvent -- Spectral and Scattering Theory -- Resonances and Scattering Poles -- Upper Bound for Resonances -- Selberg Zeta Function -- Wave Trace and Poisson Formula -- Resonance Asymptotics -- Inverse Spectral Geometry -- Patterson–Sullivan Theory -- Dynamical Approach to the Zeta Function. 
520 |a This book introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of dramatic recent developments in the field. These developments were prompted by advances in geometric scattering theory in the early 1990s which provided new tools for the study of resonances. Hyperbolic surfaces provide an ideal context in which to introduce these new ideas, with technical difficulties kept to a minimum. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, spectral theory, and ergodic theory. The book highlights these connections, at a level accessible to graduate students and researchers from a wide range of fields. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, characterization of the spectrum, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Partial differential equations. 
650 0 |a Differential geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817645243 
830 0 |a Progress in Mathematics ;  |v 256 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4653-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)