Spectral Theory of Infinite-Area Hyperbolic Surfaces

This book introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of dramatic recent developments in the field. These developments were prompted by advances in geometric scattering theory in the early 1990s which provided new tools for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Borthwick, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2007.
Σειρά:Progress in Mathematics ; 256
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Hyperbolic Surfaces
  • Compact and Finite-Area Surfaces
  • Spectral Theory for the Hyperbolic Plane
  • Model Resolvents for Cylinders
  • TheResolvent
  • Spectral and Scattering Theory
  • Resonances and Scattering Poles
  • Upper Bound for Resonances
  • Selberg Zeta Function
  • Wave Trace and Poisson Formula
  • Resonance Asymptotics
  • Inverse Spectral Geometry
  • Patterson–Sullivan Theory
  • Dynamical Approach to the Zeta Function.