Self-adjoint Extensions in Quantum Mechanics General Theory and Applications to Schrödinger and Dirac Equations with Singular Potentials /
Quantization of physical systems requires a correct definition of quantum-mechanical observables, such as the Hamiltonian, momentum, etc., as self-adjoint operators in appropriate Hilbert spaces and their spectral analysis. Though a “naïve” treatment exists for dealing with such problems, it is ba...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston :
Birkhäuser Boston,
2012.
|
Σειρά: | Progress in Mathematical Physics ;
62 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Linear Operators in Hilbert Spaces
- Basics of Theory of s.a. Extensions of Symmetric Operators
- Differential Operators
- Spectral Analysis of s.a. Operators
- Free One-Dimensional Particle on an Interval
- One-Dimensional Particle in Potential Fields
- Schrödinger Operators with Exactly Solvable Potentials
- Dirac Operator with Coulomb Field
- Schrödinger and Dirac Operators with Aharonov-Bohm and Magnetic-Solenoid Fields.