Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics

Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three decades the development of a number of novel ideas in algebraic geometry, category theory, gauge theory, and string theory has been closely related to g...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bartocci, Claudio (Συγγραφέας), Bruzzo, Ugo (Συγγραφέας), Hernández Ruipérez, Daniel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2009.
Σειρά:Progress in Mathematics ; 276
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03245nam a22005295i 4500
001 978-0-8176-4663-9
003 DE-He213
005 20151204173949.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780817646639  |9 978-0-8176-4663-9 
024 7 |a 10.1007/b11801  |2 doi 
040 |d GrThAP 
050 4 |a QC1-75 
072 7 |a PH  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
082 0 4 |a 530  |2 23 
100 1 |a Bartocci, Claudio.  |e author. 
245 1 0 |a Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics  |h [electronic resource] /  |c by Claudio Bartocci, Ugo Bruzzo, Daniel Hernández Ruipérez. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2009. 
300 |a XVI, 418 p. 83 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 276 
505 0 |a Integral functors -- Fourier-Mukai functors -- Fourier-Mukai on Abelian varieties -- Fourier-Mukai on K3 surfaces -- Nahm transforms -- Relative Fourier-Mukai functors -- Fourier-Mukai partners and birational geometry -- Derived and triangulated categories -- Lattices -- Miscellaneous results -- Stability conditions for derived categories. 
520 |a Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three decades the development of a number of novel ideas in algebraic geometry, category theory, gauge theory, and string theory has been closely related to generalizations of integral transforms of a more geometric character. Fourier–Mukai and Nahm Transforms in Geometry and Mathematical Physics examines the algebro-geometric approach (Fourier–Mukai functors) as well as the differential-geometric constructions (Nahm). Also included is a considerable amount of material from existing literature which has not been systematically organized into a monograph. Key features: * Basic constructions and definitions are presented in preliminary background chapters * Presentation explores applications and suggests several open questions * Extensive bibliography and index This self-contained monograph provides an introduction to current research in geometry and mathematical physics and is intended for graduate students and researchers just entering this field. 
650 0 |a Physics. 
650 0 |a Algebraic geometry. 
650 0 |a Partial differential equations. 
650 0 |a Differential geometry. 
650 1 4 |a Physics. 
650 2 4 |a Physics, general. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Bruzzo, Ugo.  |e author. 
700 1 |a Hernández Ruipérez, Daniel.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817632465 
830 0 |a Progress in Mathematics ;  |v 276 
856 4 0 |u http://dx.doi.org/10.1007/b11801  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)