Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics
Integral transforms, such as the Laplace and Fourier transforms, have been major tools in mathematics for at least two centuries. In the last three decades the development of a number of novel ideas in algebraic geometry, category theory, gauge theory, and string theory has been closely related to g...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston :
Birkhäuser Boston,
2009.
|
Σειρά: | Progress in Mathematics ;
276 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Integral functors
- Fourier-Mukai functors
- Fourier-Mukai on Abelian varieties
- Fourier-Mukai on K3 surfaces
- Nahm transforms
- Relative Fourier-Mukai functors
- Fourier-Mukai partners and birational geometry
- Derived and triangulated categories
- Lattices
- Miscellaneous results
- Stability conditions for derived categories.