Geometric Integration Theory

This textbook introduces geometric measure theory through the notion of currents. Currents—continuous linear functionals on spaces of differential forms—are a natural language in which to formulate various types of extremal problems arising in geometry, and can be used to study generalized versions...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Krantz, Steven (Συγγραφέας), Parks, Harold (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2008.
Σειρά:Cornerstones
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03360nam a22005895i 4500
001 978-0-8176-4679-0
003 DE-He213
005 20151204160400.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780817646790  |9 978-0-8176-4679-0 
024 7 |a 10.1007/978-0-8176-4679-0  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Krantz, Steven.  |e author. 
245 1 0 |a Geometric Integration Theory  |h [electronic resource] /  |c by Steven Krantz, Harold Parks. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2008. 
300 |a XVI, 340 p. 33 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cornerstones 
505 0 |a Basics -- Carathéodory’s Construction and Lower-Dimensional Measures -- Invariant Measures and the Construction of Haar Measure. -- Covering Theorems and the Differentiation of Integrals -- Analytical Tools: The Area Formula, the Coarea Formula, and Poincaré Inequalities. -- The Calculus of Differential Forms and Stokes’s Theorem -- to Currents -- Currents and the Calculus of Variations -- Regularity of Mass-Minimizing Currents. 
520 |a This textbook introduces geometric measure theory through the notion of currents. Currents—continuous linear functionals on spaces of differential forms—are a natural language in which to formulate various types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Key features of Geometric Integration Theory: * Includes topics on the deformation theorem, the area and coarea formulas, the compactness theorem, the slicing theorem and applications to minimal surfaces * Applies techniques to complex geometry, partial differential equations, harmonic analysis, differential geometry, and many other parts of mathematics * Provides considerable background material for the student Motivating key ideas with examples and figures, Geometric Integration Theory is a comprehensive introduction ideal for use in the classroom and for self-study. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for graduate students and researchers. 
650 0 |a Mathematics. 
650 0 |a Integral equations. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Measure theory. 
650 0 |a Geometry. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Integral Equations. 
650 2 4 |a Integral Transforms, Operational Calculus. 
650 2 4 |a Convex and Discrete Geometry. 
700 1 |a Parks, Harold.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817646769 
830 0 |a Cornerstones 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4679-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)