Geometric Integration Theory
This textbook introduces geometric measure theory through the notion of currents. Currents—continuous linear functionals on spaces of differential forms—are a natural language in which to formulate various types of extremal problems arising in geometry, and can be used to study generalized versions...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston :
Birkhäuser Boston,
2008.
|
Σειρά: | Cornerstones
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Basics
- Carathéodory’s Construction and Lower-Dimensional Measures
- Invariant Measures and the Construction of Haar Measure.
- Covering Theorems and the Differentiation of Integrals
- Analytical Tools: The Area Formula, the Coarea Formula, and Poincaré Inequalities.
- The Calculus of Differential Forms and Stokes’s Theorem
- to Currents
- Currents and the Calculus of Variations
- Regularity of Mass-Minimizing Currents.