A History of Abstract Algebra

Prior to the nineteenth century, algebra meant the study of the solution of polynomial equations. By the twentieth century algebra came to encompass the study of abstract, axiomatic systems such as groups, rings, and fields. This presentation provides an account of the intellectual lineage behind ma...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kleiner, Israel (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03569nam a22005415i 4500
001 978-0-8176-4685-1
003 DE-He213
005 20151204172356.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780817646851  |9 978-0-8176-4685-1 
024 7 |a 10.1007/978-0-8176-4685-1  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
245 1 2 |a A History of Abstract Algebra  |h [electronic resource] /  |c edited by Israel Kleiner. 
264 1 |a Boston, MA :  |b Birkhäuser Boston,  |c 2007. 
300 |a XVI, 168 p. 24 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a History of Classical Algebra -- History of Group Theory -- History of Ring Theory -- History of Field Theory -- History of Linear Algebra -- Emmy Noether and the Advent of Abstract Algebra -- A Course in Abstract Algebra Inspired by History -- Biographies of Selected Mathematicians. 
520 |a Prior to the nineteenth century, algebra meant the study of the solution of polynomial equations. By the twentieth century algebra came to encompass the study of abstract, axiomatic systems such as groups, rings, and fields. This presentation provides an account of the intellectual lineage behind many of the basic concepts, results, and theories of abstract algebra. The development of abstract algebra was propelled by the need for new tools to address certain classical problems that appeared unsolvable by classical means. A major theme of the approach in this book is to show how abstract algebra has arisen in attempts to solve some of these classical problems, providing context from which the reader may gain a deeper appreciation of the mathematics involved. Key features: * Begins with an overview of classical algebra * Contains separate chapters on aspects of the development of groups, rings, and fields * Examines the evolution of linear algebra as it relates to other elements of abstract algebra * Highlights the lives and works of six notables: Cayley, Dedekind, Galois, Gauss, Hamilton, and especially the pioneering work of Emmy Noether * Offers suggestions to instructors on ways of integrating the history of abstract algebra into their teaching * Each chapter concludes with extensive references to the relevant literature Mathematics instructors, algebraists, and historians of science will find the work a valuable reference. The book may also serve as a supplemental text for courses in abstract algebra or the history of mathematics. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Field theory (Physics). 
650 0 |a Group theory. 
650 0 |a Matrix theory. 
650 0 |a History. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
700 1 |a Kleiner, Israel.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817646844 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4685-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)