Ancient Indian Leaps into Mathematics

This book presents contributions of mathematicians covering topics from ancient India, placing them in the broader context of the history of mathematics. Although the translations of some Sanskrit mathematical texts are available in the literature, Indian contributions are rarely presented in major...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Yadav, B.S (Επιμελητής έκδοσης), Mohan, Man (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03577nam a22004455i 4500
001 978-0-8176-4695-0
003 DE-He213
005 20151125201412.0
007 cr nn 008mamaa
008 110119s2011 xxu| s |||| 0|eng d
020 |a 9780817646950  |9 978-0-8176-4695-0 
024 7 |a 10.1007/978-0-8176-4695-0  |2 doi 
040 |d GrThAP 
050 4 |a QA21-27 
072 7 |a PBX  |2 bicssc 
072 7 |a MAT015000  |2 bisacsh 
082 0 4 |a 510.9  |2 23 
245 1 0 |a Ancient Indian Leaps into Mathematics  |h [electronic resource] /  |c edited by B.S. Yadav, Man Mohan. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a XX, 218 p. 30 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Foreword -- Prelude -- Indian Mathematics in the Medieval Islamic World -- Brahmagupta: the Ancient Indian Mathematician -- Indian Calendrical Calculations -- India’s contributions to Chinese Mathematics up to the Eighth Century A.D. -- Some Discussions about how Indian Trigonometry affected Chinese Calendar-Calculation in the Tang Dynasty -- On the Application of Areas in the Sulbasutra -- Indian Mathematical Tradition with special reference to Kerala: Methodology and Motivations -- Mainland South-East Asia as a Crossroad of Chinese and Indian Astronomy -- Mathematical Literature in the Regional Languages of India -- Pascal’s Triangle in 500 BC -- André Weil: His Book on Number Theory and Indian References -- The Algorithm of Extraction in both Greek and Sino-Indian Mathematical Traditions -- Index. 
520 |a This book presents contributions of mathematicians covering topics from ancient India, placing them in the broader context of the history of mathematics. Although the translations of some Sanskrit mathematical texts are available in the literature, Indian contributions are rarely presented in major Western historical works. Yet some of the well-known and universally-accepted discoveries from India, including the concept of zero and the decimal representation of numbers, have made lasting contributions to the foundation of modern mathematics. Key topics include: The work of two well-known Indian mathematicians: Brahmagupta and Bhaskaracharya; The relationship of Indian mathematics to the mathematics of China and Greece; The transmission of mathematical ideas between the Western and non-Western world; A study of Keralese mathematics and coverage of the techniques used in the Śulbasūtras; The calendrical calculations, complete with computer programs, enabling readers to determine Indian dates. Ancient Indian Leaps into Mathematics examines these ancient mathematical ideas that were spread throughout India, China, the Islamic world, and Western Europe. Through a systematic approach, it gives an historical account of ancient Indian mathematical traditions and their influence on other parts of the world. 
650 0 |a Mathematics. 
650 0 |a Philosophy, Asian. 
650 0 |a History. 
650 1 4 |a Mathematics. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Non-Western Philosophy. 
700 1 |a Yadav, B.S.  |e editor. 
700 1 |a Mohan, Man.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817646943 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4695-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)