An Introduction to Tensors and Group Theory for Physicists

An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the cont...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jeevanjee, Nadir (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2011.
Έκδοση:1.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03355nam a22005535i 4500
001 978-0-8176-4715-5
003 DE-He213
005 20151204144559.0
007 cr nn 008mamaa
008 110823s2011 xxu| s |||| 0|eng d
020 |a 9780817647155  |9 978-0-8176-4715-5 
024 7 |a 10.1007/978-0-8176-4715-5  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Jeevanjee, Nadir.  |e author. 
245 1 3 |a An Introduction to Tensors and Group Theory for Physicists  |h [electronic resource] /  |c by Nadir Jeevanjee. 
250 |a 1. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2011. 
300 |a XVI, 242 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I Linear Algebra and Tensors -- A Quick Introduction to Tensors.- Vector Spaces -- Tensors -- Part II Group Theory -- Groups, Lie Groups, and Lie Algebras.- Basic Representation Theory -- The Winger-Echart Theorem and Other Applications -- Appendix Complexifications of Real Lie Algebras and the Tensor Product Decomposition of sl(2,C)R.- References -- Index. 
520 |a An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual formulation found in many mathematical texts, the work will be a welcome addition to the literature on tensors and group theory. Part I of the text begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to classical and quantum physics through the use of tensor products. Part II introduces abstract groups along with matrix Lie groups and Lie algebras, then intertwines this material with that of Part I by introducing representation theory.  Exercises and examples are provided throughout for good practice in applying the presented definitions and techniques. Advanced undergraduate and graduate students in physics and applied mathematics will find clarity and insight into the subject in this textbook. 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mathematical physics. 
650 0 |a Physics. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Quantum Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817647148 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4715-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)