Introduction to Quantum Groups

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. It is shown that these algebras have natural integral forms that can be specialized at roots of 1 and yield new objects, which include quantum versions of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lusztig, George (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2010.
Σειρά:Modern Birkhäuser Classics
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05355nam a22005415i 4500
001 978-0-8176-4717-9
003 DE-He213
005 20151204163316.0
007 cr nn 008mamaa
008 110222s2010 xxu| s |||| 0|eng d
020 |a 9780817647179  |9 978-0-8176-4717-9 
024 7 |a 10.1007/978-0-8176-4717-9  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Lusztig, George.  |e author. 
245 1 0 |a Introduction to Quantum Groups  |h [electronic resource] /  |c by George Lusztig. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2010. 
300 |a XIV, 352 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modern Birkhäuser Classics 
505 0 |a THE DRINFELD JIMBO ALGERBRA U -- The Algebra f -- Weyl Group, Root Datum -- The Algebra U -- The Quasi--Matrix -- The Symmetries of an Integrable U-Module -- Complete Reducibility Theorems -- Higher Order Quantum Serre Relations -- GEOMETRIC REALIZATION OF F -- Review of the Theory of Perverse Sheaves -- Quivers and Perverse Sheaves -- Fourier-Deligne Transform -- Periodic Functors -- Quivers with Automorphisms -- The Algebras and k -- The Signed Basis of f -- KASHIWARAS OPERATIONS AND APPLICATIONS -- The Algebra -- Kashiwara’s Operators in Rank 1 -- Applications -- Study of the Operators -- Inner Product on -- Bases at ? -- Cartan Data of Finite Type -- Positivity of the Action of Fi, Ei in the Simply-Laced Case -- CANONICAL BASIS OF U -- The Algebra -- Canonical Bases in Certain Tensor Products -- The Canonical Basis -- Inner Product on -- Based Modules -- Bases for Coinvariants and Cyclic Permutations -- A Refinement of the Peter-Weyl Theorem -- The Canonical Topological Basis of -- CHANGE OF RINGS -- The Algebra -- Commutativity Isomorphism -- Relation with Kac-Moody Lie Algebras -- Gaussian Binomial Coefficients at Roots of 1 -- The Quantum Frobenius Homomorphism -- The Algebras -- BRAID GROUP ACTION -- The Symmetries of U -- Symmetries and Inner Product on f -- Braid Group Relations -- Symmetries and U+ -- Integrality Properties of the Symmetries -- The ADE Case. 
520 |a The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. It is shown that these algebras have natural integral forms that can be specialized at roots of 1 and yield new objects, which include quantum versions of the semi-simple groups over fields of positive characteristic. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical bases having rather remarkable properties. This book contains an extensive treatment of the theory of canonical bases in the framework of perverse sheaves. The theory developed in the book includes the case of quantum affine enveloping algebras and, more generally, the quantum analogs of the Kac–Moody Lie algebras. Introduction to Quantum Groups will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists, theoretical physicists, and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the work may also be used as a textbook. **************************************** There is no doubt that this volume is a very remarkable piece of work...Its appearance represents a landmark in the mathematical literature. —Bulletin of the London Mathematical Society This book is an important contribution to the field and can be recommended especially to mathematicians working in the field. —EMS Newsletter The present book gives a very efficient presentation of an important part of quantum group theory. It is a valuable contribution to the literature. —Mededelingen van het Wiskundig Lusztig's book is very well written and seems to be flawless...Obviously, this will be the standard reference book for the material presented and anyone interested in the Drinfeld–Jimbo algebras will have to study it very carefully. —ZAA [T]his book is much more than an 'introduction to quantum groups.' It contains a wealth of material. In addition to the many important results (of which several are new–at least in the generality presented here), there are plenty of useful calculations (commutator formulas, generalized quantum Serre relations, etc.). —Zentralblatt MATH. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Group theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Physics. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Algebra. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817647162 
830 0 |a Modern Birkhäuser Classics 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4717-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)