Higher Structures in Geometry and Physics In Honor of Murray Gerstenhaber and Jim Stasheff /

This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical ph...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Cattaneo, Alberto S. (Επιμελητής έκδοσης), Giaquinto, Anthony (Επιμελητής έκδοσης), Xu, Ping (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2011.
Σειρά:Progress in Mathematics ; 287
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04600nam a22006135i 4500
001 978-0-8176-4735-3
003 DE-He213
005 20151103141043.0
007 cr nn 008mamaa
008 101125s2011 xxu| s |||| 0|eng d
020 |a 9780817647353  |9 978-0-8176-4735-3 
024 7 |a 10.1007/978-0-8176-4735-3  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
245 1 0 |a Higher Structures in Geometry and Physics  |h [electronic resource] :  |b In Honor of Murray Gerstenhaber and Jim Stasheff /  |c edited by Alberto S. Cattaneo, Anthony Giaquinto, Ping Xu. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2011. 
300 |a XV, 362 p. 92 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 287 
505 0 |a Topics in Algebraic deformation theory -- Origins and breadth of the theory of higher homotopies -- The deformation philosophy, quantization and noncommutative space-time structures -- Differential geometry of Gerbes and differential forms -- Symplectic connections of Ricci type and star products -- Effective Batalin–Vilkovisky theories, equivariant configuration spaces and cyclic chains -- Noncommutative calculus and the Gauss-Manin connection -- The Lie algebra perturbation lemma -- Twisting Elements in Homotopy G-algebras -- Homological perturbation theory and homological mirror symmetry -- Categorification of acyclic cluster algebras: an introduction -- Poisson and symplectic functions in Lie algebroid theory -- The diagonal of the Stasheff polytope -- Permutahedra, HKR isomorphism and polydifferential Gerstenhaber-Schack complex -- Applications de la bi-quantification a la théorie de Lie -- Higher homotopy Hopf algebras found: A ten year retrospective. 
520 |a This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. The ideas of higher homotopies and algebraic deformation have a growing number of theoretical applications and have played a prominent role in recent mathematical advances. For example, algebraic versions of higher homotopies have led eventually to the proof of the formality conjecture and the deformation quantization of Poisson manifolds. As observed in deformations and deformation philosophy, a basic observation is that higher homotopy structures behave much better than strict structures. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. Higher Structures in Geometry and Physics is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures. Contributors: L. Breen, A.S. Cattaneo, M. Cahen, V.A. Dolgushev, G. Felder, A. Giaquinto, S. Gutt, J. Huebschmann, T. Kadeishvili, H. Kajiura, B. Keller, Y. Kosmann-Schwarzbach, J.-L. Loday, S.A. Merkulov, D. Sternheimer, D.E. Tamarkin, C. Torossian, B.L. Tsygan, S. Waldmann, R.N. Umble. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Group theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Cattaneo, Alberto S.  |e editor. 
700 1 |a Giaquinto, Anthony.  |e editor. 
700 1 |a Xu, Ping.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817647346 
830 0 |a Progress in Mathematics ;  |v 287 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4735-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)