Developments and Trends in Infinite-Dimensional Lie Theory

This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Neeb, Karl-Hermann (Επιμελητής έκδοσης), Pianzola, Arturo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2011.
Σειρά:Progress in Mathematics ; 288
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04466nam a22005895i 4500
001 978-0-8176-4741-4
003 DE-He213
005 20151125191745.0
007 cr nn 008mamaa
008 101029s2011 xxu| s |||| 0|eng d
020 |a 9780817647414  |9 978-0-8176-4741-4 
024 7 |a 10.1007/978-0-8176-4741-4  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
245 1 0 |a Developments and Trends in Infinite-Dimensional Lie Theory  |h [electronic resource] /  |c edited by Karl-Hermann Neeb, Arturo Pianzola. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2011. 
300 |a VIII, 492 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 288 
505 0 |a Preface -- Part A: Infinite-Dimensional Lie (Super-)Algebras -- Isotopy for Extended Affine Lie Algebras and Lie Tori -- Remarks on the Isotriviality of Multiloop Algebras -- Extended Affine Lie Algebras and Other Generalizations of Affine Lie Algebras – A Survey -- Tensor Representations of Classical Locally Finite Lie Algebras -- Lie Algebras, Vertex Algebras, and Automorphic Forms -- Kac–Moody Superalgebras and Integrability -- Part B: Geometry of Infinite-Dimensional Lie (Transformation) Groups -- Jordan Structures and Non-Associative Geometry -- Direct Limits of Infinite-Dimensional Lie Groups -- Lie Groups of Bundle Automorphisms and Their Extensions -- Gerbes and Lie Groups -- Part C: Representation Theory of Infinite-Dimensional Lie Groups Functional Analytic Background for a Theory of Infinite- Dimensional Reductive Lie Groups -- Heat Kernel Measures and Critical Limits -- Coadjoint Orbits and the Beginnings of a Geometric Representation Theory -- Infinite-Dimensional Multiplicity-Free Spaces I: Limits of Compact Commutative Spaces -- Index. 
520 |a This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Part (A) is mainly concerned with the structure and representation theory of infinite-dimensional Lie algebras and contains articles on the structure of direct-limit Lie algebras, extended affine Lie algebras and loop algebras, as well as representations of loop algebras and Kac–Moody superalgebras. The articles in Part (B) examine connections between infinite-dimensional Lie theory and geometry. The topics range from infinite-dimensional groups acting on fiber bundles, corresponding characteristic classes and gerbes, to Jordan-theoretic geometries and new results on direct-limit groups. The analytic representation theory of infinite-dimensional Lie groups is still very much underdeveloped. The articles in Part (C) develop new, promising methods based on heat kernels, multiplicity freeness, Banach–Lie–Poisson spaces, and infinite-dimensional generalizations of reductive Lie groups. Contributors: B. Allison, D. Beltiţă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Group theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebra. 
650 2 4 |a Geometry. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Neeb, Karl-Hermann.  |e editor. 
700 1 |a Pianzola, Arturo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817647407 
830 0 |a Progress in Mathematics ;  |v 288 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4741-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)