Spectral Methods in Surface Superconductivity

During the past decade, the mathematics of superconductivity has been the subject of intense activity. This book examines in detail the nonlinear Ginzburg–Landau functional, the model most commonly used in the study of superconductivity. Specifically covered are cases in the presence of a strong mag...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fournais, Søren (Συγγραφέας), Helffer, Bernard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2010.
Σειρά:Progress in Nonlinear Differential Equations and Their Applications ; 77
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03467nam a22006015i 4500
001 978-0-8176-4797-1
003 DE-He213
005 20151204154645.0
007 cr nn 008mamaa
008 100528s2010 xxu| s |||| 0|eng d
020 |a 9780817647971  |9 978-0-8176-4797-1 
024 7 |a 10.1007/978-0-8176-4797-1  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Fournais, Søren.  |e author. 
245 1 0 |a Spectral Methods in Surface Superconductivity  |h [electronic resource] /  |c by Søren Fournais, Bernard Helffer. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2010. 
300 |a XX, 324 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 77 
505 0 |a Linear Analysis -- Spectral Analysis of Schrödinger Operators -- Diamagnetism -- Models in One Dimension -- Constant Field Models in Dimension 2: Noncompact Case -- Constant Field Models in Dimension 2: Discs and Their Complements -- Models in Dimension 3: or. 
520 |a During the past decade, the mathematics of superconductivity has been the subject of intense activity. This book examines in detail the nonlinear Ginzburg–Landau functional, the model most commonly used in the study of superconductivity. Specifically covered are cases in the presence of a strong magnetic field and with a sufficiently large Ginzburg–Landau parameter kappa. Key topics and features of the work: * Provides a concrete introduction to techniques in spectral theory and partial differential equations * Offers a complete analysis of the two-dimensional Ginzburg–Landau functional with large kappa in the presence of a magnetic field * Treats the three-dimensional case thoroughly * Includes open problems Spectral Methods in Surface Superconductivity is intended for students and researchers with a graduate-level understanding of functional analysis, spectral theory, and the analysis of partial differential equations. The book also includes an overview of all nonstandard material as well as important semi-classical techniques in spectral theory that are involved in the nonlinear study of superconductivity. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a Special functions. 
650 0 |a Superconductivity. 
650 0 |a Superconductors. 
650 0 |a Electronics. 
650 0 |a Microelectronics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Electronics and Microelectronics, Instrumentation. 
650 2 4 |a Strongly Correlated Systems, Superconductivity. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Special Functions. 
700 1 |a Helffer, Bernard.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817647964 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 77 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4797-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)