Towards an Information Theory of Complex Networks Statistical Methods and Applications /

For over a decade, complex networks have steadily grown as an important tool across a broad array of academic disciplines, with applications ranging from physics to social media. A  tightly organized collection of carefully-selected papers on the subject, Towards an Information Theory of Complex Net...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Dehmer, Matthias (Επιμελητής έκδοσης), Emmert-Streib, Frank (Επιμελητής έκδοσης), Mehler, Alexander (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2011.
Έκδοση:1.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04547nam a22005895i 4500
001 978-0-8176-4904-3
003 DE-He213
005 20151103151053.0
007 cr nn 008mamaa
008 110824s2011 xxu| s |||| 0|eng d
020 |a 9780817649043  |9 978-0-8176-4904-3 
024 7 |a 10.1007/978-0-8176-4904-3  |2 doi 
040 |d GrThAP 
050 4 |a Q350-390 
050 4 |a QA10.4 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
245 1 0 |a Towards an Information Theory of Complex Networks  |h [electronic resource] :  |b Statistical Methods and Applications /  |c edited by Matthias Dehmer, Frank Emmert-Streib, Alexander Mehler. 
250 |a 1. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2011. 
300 |a XVI, 395 p. 114 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Entropy of Digraphs and Infinite Networks -- An Information-Theoretic Upper Bound on Planar Graphs Using Well-orderly Maps -- Probabilistic Inference Using Function Factorization and Divergence Minimization -- Wave Localization on Complex Networks -- Information-Theoretic Methods in Chemical Graph Theory -- On the Development and Application of Net-Sign Graph Theory -- The Central Role of Information Theory in Ecology -- Inferences About Coupling from Ecological Surveillance Monitoring -- Markov Entropy Centrality -- Social Ontologies as Generalizedd Nearly Acyclic Directed Graphs -- Typology by Means of Language Networks -- Information Theory-Based Measurement of Software -- Fair and Biased Random Walks on Undirected Graphs and Related Entropies. 
520 |a For over a decade, complex networks have steadily grown as an important tool across a broad array of academic disciplines, with applications ranging from physics to social media. A  tightly organized collection of carefully-selected papers on the subject, Towards an Information Theory of Complex Networks: Statistical Methods and Applications presents theoretical and practical results about information-theoretic and statistical models of complex networks in the natural sciences and humanities. The book's major goal is to advocate and promote a combination of graph-theoretic, information-theoretic, and statistical methods as a way to better understand and characterize real-world networks. This volume is the first to present a self-contained, comprehensive overview of information-theoretic models of complex networks with an emphasis on applications. It begins with four chapters developing the most significant formal-theoretical issues of network modeling, but the majority of the book is devoted to combining theoretical results with an empirical analysis of real networks. Specific topics include: chemical graph theory ecosystem interaction dynamics social ontologies language networks software systems This work marks a first step toward establishing advanced statistical information theory as a unified theoretical basis of complex networks for all scientific disciplines. As such, it can serve as a valuable resource for a diverse audience of advanced students and professional scientists. It is primarily intended as a reference for research, but could also be a useful supplemental graduate text in courses related to information science, graph theory, machine learning, and computational biology, among others. 
650 0 |a Mathematics. 
650 0 |a Coding theory. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Information theory. 
650 0 |a Biomathematics. 
650 0 |a Electrical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Information and Communication, Circuits. 
650 2 4 |a Coding and Information Theory. 
650 2 4 |a Physiological, Cellular and Medical Topics. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Applications of Mathematics. 
700 1 |a Dehmer, Matthias.  |e editor. 
700 1 |a Emmert-Streib, Frank.  |e editor. 
700 1 |a Mehler, Alexander.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817649036 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4904-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)