Topics in Operator Semigroups

The theory of operator semigroups was essentially discovered in the early 1930s. Since then, the theory has developed into a rich and exciting area of functional analysis and has been applied to various mathematical topics such as Markov processes, the abstract Cauchy problem, evolution equations, a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kantorovitz, Shmuel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2010.
Σειρά:Progress in Mathematics ; 281
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03310nam a22004815i 4500
001 978-0-8176-4932-6
003 DE-He213
005 20151105101015.0
007 cr nn 008mamaa
008 100301s2010 xxu| s |||| 0|eng d
020 |a 9780817649326  |9 978-0-8176-4932-6 
024 7 |a 10.1007/978-0-8176-4932-6  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Kantorovitz, Shmuel.  |e author. 
245 1 0 |a Topics in Operator Semigroups  |h [electronic resource] /  |c by Shmuel Kantorovitz. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2010. 
300 |a XIV, 266 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 281 
505 0 |a General Theory -- Basic Theory -- The Semi-Simplicity Space for Groups -- Analyticity -- The Semigroup as a Function of its Generator -- Large Parameter -- Boundary Values -- Pre-Semigroups -- Integral Representations -- The Semi-Simplicity Space -- The Laplace#x2013;Stieltjes Space -- Families of Unbounded Symmetric Operators -- A Taste of Applications -- Analytic Families of Evolution Systems -- Similarity. 
520 |a The theory of operator semigroups was essentially discovered in the early 1930s. Since then, the theory has developed into a rich and exciting area of functional analysis and has been applied to various mathematical topics such as Markov processes, the abstract Cauchy problem, evolution equations, and mathematical physics. This self-contained monograph focuses primarily on the theoretical connection between the theory of operator semigroups and spectral theory. Divided into three parts with a total of twelve distinct chapters, this book gives an in-depth account of the subject with numerous examples, detailed proofs, and a brief look at a few applications. Topics include: * The Hille–Yosida and Lumer–Phillips characterizations of semigroup generators * The Trotter–Kato approximation theorem * Kato’s unified treatment of the exponential formula and the Trotter product formula * The Hille–Phillips perturbation theorem, and Stone’s representation of unitary semigroups * Generalizations of spectral theory’s connection to operator semigroups * A natural generalization of Stone’s spectral integral representation to a Banach space setting With a collection of miscellaneous exercises at the end of the book and an introductory chapter examining the basic theory involved, this monograph is suitable for second-year graduate students interested in operator semigroups. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Group theory. 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817649319 
830 0 |a Progress in Mathematics ;  |v 281 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4932-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)