A Mathematical Introduction to Compressive Sensing

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domai...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Foucart, Simon (Συγγραφέας), Rauhut, Holger (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Birkhäuser, 2013.
Σειρά:Applied and Numerical Harmonic Analysis,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04200nam a22005415i 4500
001 978-0-8176-4948-7
003 DE-He213
005 20151218072126.0
007 cr nn 008mamaa
008 130808s2013 xxu| s |||| 0|eng d
020 |a 9780817649487  |9 978-0-8176-4948-7 
024 7 |a 10.1007/978-0-8176-4948-7  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PDE  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Foucart, Simon.  |e author. 
245 1 2 |a A Mathematical Introduction to Compressive Sensing  |h [electronic resource] /  |c by Simon Foucart, Holger Rauhut. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XVIII, 625 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
505 0 |a 1 An Invitation to Compressive Sensing -- 2 Sparse Solutions of Underdetermined Systems -- 3 Basic Algorithms -- 4 Basis Pursuit -- 5 Coherence -- 6 Restricted Isometry Property -- 7 Basic Tools from Probability Theory -- 8 Advanced Tools from Probability Theory -- 9 Sparse Recovery with Random Matrices -- 10 Gelfand Widths of l1-Balls -- 11 Instance Optimality and Quotient Property -- 12 Random Sampling in Bounded Orthonormal Systems -- 13 Lossless Expanders in Compressive Sensing -- 14 Recovery of Random Signals using Deterministic Matrices -- 15 Algorithms for l1-Minimization -- Appendix A Matrix Analysis -- Appendix B Convex Analysis -- Appendix C Miscellanea -- List of Symbols -- References. 
520 |a At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. Key features include: ·         The first textbook completely devoted to the topic of compressive sensing ·         Comprehensive treatment of the subject, including background material from probability theory, detailed proofs of the main theorems, and an outline of possible applications ·         Numerous exercises designed to help students understand the material ·         An extensive bibliography with over 500 references that guide researchers through the literature With only moderate prerequisites, A Mathematical Introduction to Compressive Sensing is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Computer mathematics. 
650 0 |a Electrical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Functional Analysis. 
700 1 |a Rauhut, Holger.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817649470 
830 0 |a Applied and Numerical Harmonic Analysis,  |x 2296-5009 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4948-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)