A Mathematical Introduction to Compressive Sensing
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domai...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York : Imprint: Birkhäuser,
2013.
|
Σειρά: | Applied and Numerical Harmonic Analysis,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 An Invitation to Compressive Sensing
- 2 Sparse Solutions of Underdetermined Systems
- 3 Basic Algorithms
- 4 Basis Pursuit
- 5 Coherence
- 6 Restricted Isometry Property
- 7 Basic Tools from Probability Theory
- 8 Advanced Tools from Probability Theory
- 9 Sparse Recovery with Random Matrices
- 10 Gelfand Widths of l1-Balls
- 11 Instance Optimality and Quotient Property
- 12 Random Sampling in Bounded Orthonormal Systems
- 13 Lossless Expanders in Compressive Sensing
- 14 Recovery of Random Signals using Deterministic Matrices
- 15 Algorithms for l1-Minimization
- Appendix A Matrix Analysis
- Appendix B Convex Analysis
- Appendix C Miscellanea
- List of Symbols
- References.