System Identification with Quantized Observations

This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Wang, Le Yi (Συγγραφέας), Yin, G. George (Συγγραφέας), Zhang, Ji-Feng (Συγγραφέας), Zhao, Yanlong (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2010.
Σειρά:Systems & Control: Foundations & Applications
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04461nam a22006135i 4500
001 978-0-8176-4956-2
003 DE-He213
005 20151204173957.0
007 cr nn 008mamaa
008 100528s2010 xxu| s |||| 0|eng d
020 |a 9780817649562  |9 978-0-8176-4956-2 
024 7 |a 10.1007/978-0-8176-4956-2  |2 doi 
040 |d GrThAP 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Wang, Le Yi.  |e author. 
245 1 0 |a System Identification with Quantized Observations  |h [electronic resource] /  |c by Le Yi Wang, G. George Yin, Ji-Feng Zhang, Yanlong Zhao. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2010. 
300 |a XVIII, 317 p. 42 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Systems & Control: Foundations & Applications 
505 0 |a Overview -- System Settings -- Stochastic Methods for Linear Systems -- Empirical-Measure-Based Identification: Binary-Valued Observations -- Estimation Error Bounds: Including Unmodeled Dynamics -- Rational Systems -- Quantized Identification and Asymptotic Efficiency -- Input Design for Identification in Connected Systems -- Identification of Sensor Thresholds and Noise Distribution Functions -- Deterministic Methods for Linear Systems -- Worst-Case Identification under Binary-Valued Observations -- Worst-Case Identification Using Quantized Observations -- Identification of Nonlinear and Switching Systems -- Identification of Wiener Systems with Binary-Valued Observations -- Identification of Hammerstein Systems with Quantized Observations -- Systems with Markovian Parameters -- Complexity Analysis -- Space and Time Complexities, Threshold Selection, Adaptation -- Impact of Communication Channels on System Identification. 
520 |a This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification, the book treats linear and nonlinear systems, as well as time-invariant and time-varying systems. The authors examine independent and dependent noises, stochastic- and deterministic-bounded noises, and also noises with unknown distribution functions. The key methodologies combine empirical measures and information-theoretic approaches to derive identification algorithms, provide convergence and convergence speed, establish efficiency of estimation, and explore input design, threshold selection and adaptation, and complexity analysis. System Identification with Quantized Observations is an excellent resource for graduate students, systems theorists, control engineers, applied mathematicians, as well as practitioners who use identification algorithms in their work. Selected material from the book may be used in graduate-level courses on system identification. 
650 0 |a Mathematics. 
650 0 |a System theory. 
650 0 |a Algorithms. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 0 |a Control engineering. 
650 0 |a Electrical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Control. 
650 2 4 |a Algorithms. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 |a Yin, G. George.  |e author. 
700 1 |a Zhang, Ji-Feng.  |e author. 
700 1 |a Zhao, Yanlong.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817649555 
830 0 |a Systems & Control: Foundations & Applications 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-4956-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)