Geometry and Spectra of Compact Riemann Surfaces
This classic monograph is a self-contained introduction to the geometry of Riemann surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace op...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston :
Birkhäuser Boston,
2010.
|
Σειρά: | Modern Birkhäuser Classics
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Hyperbolic Structures
- Trigonometry
- Y-Pieces and Twist Parameters
- The Collar Theorem
- Bers’ Constant and the Hairy Torus
- The Teichmüller Space
- The Spectrum of the Laplacian
- Small Eigenvalues
- Closed Geodesics and Huber’s Theorem
- Wolpert’s Theorem
- Sunada’s Theorem
- Examples of Isospectral Riemann Surfaces
- The Size of Isospectral Families
- Perturbations of the Laplacian in Teichmüller Space.