Extensions of Moser–Bangert Theory Locally Minimal Solutions /

With the goal of establishing a version for partial differential equations (PDEs) of the Aubry–Mather theory of monotone twist maps, Moser and then Bangert studied solutions of their model equations that possessed certain minimality and monotonicity properties. This monograph presents extensions of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rabinowitz, Paul H. (Συγγραφέας), Stredulinsky, Edward W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2011.
Σειρά:Progress in Nonlinear Differential Equations and Their Applications ; 81
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04019nam a22005655i 4500
001 978-0-8176-8117-3
003 DE-He213
005 20151204153921.0
007 cr nn 008mamaa
008 110615s2011 xxu| s |||| 0|eng d
020 |a 9780817681173  |9 978-0-8176-8117-3 
024 7 |a 10.1007/978-0-8176-8117-3  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Rabinowitz, Paul H.  |e author. 
245 1 0 |a Extensions of Moser–Bangert Theory  |h [electronic resource] :  |b Locally Minimal Solutions /  |c by Paul H. Rabinowitz, Edward W. Stredulinsky. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2011. 
300 |a VIII, 208 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 81 
505 0 |a 1 Introduction -- Part I: Basic Solutions -- 2 Function Spaces and the First Renormalized Functional -- 3 The Simplest Heteroclinics -- 4 Heteroclinics in x1 and x2 -- 5 More Basic Solutions -- Part II: Shadowing Results -- 6 The Simplest Cases -- 7 The Proof of Theorem 6.8 -- 8 k-Transition Solutions for k > 2 -- 9 Monotone 2-Transition Solutions -- 10 Monotone Multitransition Solutions -- 11 A Mixed Case -- Part III: Solutions of (PDE) Defined on R^2 x T^{n-2} -- 12 A Class of Strictly 1-Monotone Infinite Transition Solutions of (PDE) -- 13 Solutions of (PDE) with Two Transitions in x1 and Heteroclinic Behavior in x2. 
520 |a With the goal of establishing a version for partial differential equations (PDEs) of the Aubry–Mather theory of monotone twist maps, Moser and then Bangert studied solutions of their model equations that possessed certain minimality and monotonicity properties. This monograph presents extensions of the Moser–Bangert approach that include solutions of a family of nonlinear elliptic PDEs on Rn and an Allen–Cahn PDE model of phase transitions. After recalling the relevant Moser–Bangert results, Extensions of Moser–Bangert Theory pursues the rich structure of the set of solutions of a simpler model case, expanding upon the studies of Moser and Bangert to include solutions that merely have local minimality properties. Subsequent chapters build upon the introductory results, making the monograph self contained. Part I introduces a variational approach involving a renormalized functional to characterize the basic heteroclinic solutions obtained by Bangert. Following that, Parts II and III employ these basic solutions together with constrained minimization methods to construct multitransition heteroclinic and homoclinic solutions on R×Tn-1 and R2×Tn-2, respectively, as local minima of the renormalized functional. The work is intended for mathematicians who specialize in partial differential equations and may also be used as a text for a graduate topics course in PDEs. 
650 0 |a Mathematics. 
650 0 |a Food  |x Biotechnology. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Partial differential equations. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Analysis. 
650 2 4 |a Food Science. 
700 1 |a Stredulinsky, Edward W.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817681166 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 81 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-8117-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)