|
|
|
|
LEADER |
03870nam a22005055i 4500 |
001 |
978-0-8176-8289-7 |
003 |
DE-He213 |
005 |
20151204154351.0 |
007 |
cr nn 008mamaa |
008 |
110923s2012 xxu| s |||| 0|eng d |
020 |
|
|
|a 9780817682897
|9 978-0-8176-8289-7
|
024 |
7 |
|
|a 10.1007/978-0-8176-8289-7
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA299.6-433
|
072 |
|
7 |
|a PBK
|2 bicssc
|
072 |
|
7 |
|a MAT034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515
|2 23
|
100 |
1 |
|
|a Schinazi, Rinaldo B.
|e author.
|
245 |
1 |
0 |
|a From Calculus to Analysis
|h [electronic resource] /
|c by Rinaldo B. Schinazi.
|
250 |
|
|
|a 1.
|
264 |
|
1 |
|a Boston :
|b Birkhäuser Boston :
|b Imprint: Birkhäuser,
|c 2012.
|
300 |
|
|
|a X, 250 p. 7 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Preface -- Ch. 1 Number Systems -- 1.1 The algebra of the reals -- 1.2 Natural numbers and integers -- .1.3 Rational numbers and real numbers -- 1.4 Power functions -- Ch. 2 Sequences and Series -- 2.1 Sequences -- 2.2 Montone sequences, Bolzano-Weirestrass theorem and operations on limits -- 2.3 Series -- 2.4 Absolute convergence -- Ch. 3 Power series and special functions.-3.1 Power series.-3.2 Tigonometric functions -- 3.3 Inverse trigonometric functions -- 3.4 Exponential and logarithmic functions -- Ch 4 Fifty Ways to Estimate the Number pi.-4.1 Power series expansions -- 4.2 Wallis' integrals, Euler's formula, and Stirling's formula.-4.3 Convergence of infinite products -- 4.4 The number pi is irrational -- Ch. 5 Continuity, Limits, and Differentiation -- 5.1 Continuity -- 5.2 Limits of functions and derivatives -- 5.3 Algebra of derivatives and mean value theorems -- 5.4 Intervals, continuity, and inverse functions -- Ch. 6 Riemann Integration -- 6.1 Construction of the integral -- 6.2 Properties of the integral -- 6.3 Uniform continuity -- Ch 7 Decimal Represenation of Numbers -- Ch 8 Countable and Uncountable Sets -- Further Readings -- Index.
|
520 |
|
|
|a This comprehensive textbook is intended for a two-semester sequence in analysis. The first four chapters present a practical introduction to analysis by using the tools and concepts of calculus. The last five chapters present a first course in analysis. The presentation is clear and concise, allowing students to master the calculus tools that are crucial in understanding analysis. Key features: * Contains numerous exercises; * Provides unique examples, such as many ways to estimate the number Pi; * Introduces the basic principles of analysis; * Offers a straightforward introduction to the calculus basics such as number systems, sequences, and series; * Carefully written book with a thoughtful perspective for students. From Calculus to Analysis prepares readers for their first analysis course—important because many undergraduate programs traditionally require such a course. Undergraduates and some advanced high-school seniors will find this text a useful and pleasant experience in the classroom or as a self-study guide. The only prerequisite is a standard calculus course.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Mathematical analysis.
|
650 |
|
0 |
|a Analysis (Mathematics).
|
650 |
|
0 |
|a Approximation theory.
|
650 |
|
0 |
|a Measure theory.
|
650 |
|
0 |
|a Sequences (Mathematics).
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Analysis.
|
650 |
2 |
4 |
|a Sequences, Series, Summability.
|
650 |
2 |
4 |
|a Approximations and Expansions.
|
650 |
2 |
4 |
|a Measure and Integration.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9780817682880
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-0-8176-8289-7
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|