Foundations of Mathematical Analysis

Mathematical analysis is fundamental to the undergraduate curriculum not only because it is the stepping stone for the study of advanced analysis, but also because of its applications to other branches of mathematics, physics, and engineering at both the undergraduate and graduate levels. This self-...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ponnusamy, S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Έκδοση:1.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03982nam a22005175i 4500
001 978-0-8176-8292-7
003 DE-He213
005 20151204183551.0
007 cr nn 008mamaa
008 111216s2012 xxu| s |||| 0|eng d
020 |a 9780817682927  |9 978-0-8176-8292-7 
024 7 |a 10.1007/978-0-8176-8292-7  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Ponnusamy, S.  |e author. 
245 1 0 |a Foundations of Mathematical Analysis  |h [electronic resource] /  |c by S. Ponnusamy. 
250 |a 1. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a XV, 570 p. 205 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Real Number System -- Sequences: Convergence and Divergence -- Limits, Continuity, and Differentiability -- Applications of Differentiability -- Series: Convergence and Divergence -- Definite and Indefinite Integrals -- Improper Integrals and Applications of Riemann Integrals -- Power Series -- Uniform Convergence of Sequences of Functions -- Fourier Series and Applications -- Functions of Bounded Variation and Riemann-Stieltjes Integrals -- References -- Index of Special Notations -- Hints for Selected Questions and Exercises -- Index. 
520 |a Mathematical analysis is fundamental to the undergraduate curriculum not only because it is the stepping stone for the study of advanced analysis, but also because of its applications to other branches of mathematics, physics, and engineering at both the undergraduate and graduate levels. This self-contained textbook consists of eleven chapters, which are further divided into sections and subsections. Each section includes a careful selection of special topics covered that will serve to illustrate the scope and power of various methods in real analysis. The exposition is developed with thorough explanations, motivating examples, and illustrations conveying geometric intuition in a pleasant and informal style to help readers grasp difficult concepts. Key features include: * “Questions and Exercises” are provided at the end of each section, covering a broad spectrum of content with various levels of difficulty; * Some of the exercises are routine in nature while others are interesting, instructive, and challenging with hints provided for selected exercises; * Covers a broad spectrum of content with a range of difficulty that will enable students to learn techniques and standard analysis tools; * Introduces convergence, continuity, differentiability, the Riemann integral, power series, uniform convergence of sequences and series of functions, among other topics; * Examines various important applications throughout the book; * Figures throughout the book to demonstrate ideas and concepts are drawn using Mathematica. Foundations of Mathematical Analysis is intended for undergraduate students and beginning graduate students interested in a fundamental introduction to the subject. It may be used in the classroom or as a self-study guide without any required prerequisites. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Approximation theory. 
650 0 |a Fourier analysis. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Fourier Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817682910 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-8292-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)