The Pullback Equation for Differential Forms

An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f.  In more physical terms, the question under consideration can be seen as a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Csató, Gyula (Συγγραφέας), Dacorogna, Bernard (Συγγραφέας), Kneuss, Olivier (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2012.
Σειρά:Progress in Nonlinear Differential Equations and Their Applications ; 83
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04386nam a22005415i 4500
001 978-0-8176-8313-9
003 DE-He213
005 20151125221447.0
007 cr nn 008mamaa
008 111111s2012 xxu| s |||| 0|eng d
020 |a 9780817683139  |9 978-0-8176-8313-9 
024 7 |a 10.1007/978-0-8176-8313-9  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Csató, Gyula.  |e author. 
245 1 4 |a The Pullback Equation for Differential Forms  |h [electronic resource] /  |c by Gyula Csató, Bernard Dacorogna, Olivier Kneuss. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2012. 
300 |a XI, 436 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 83 
505 0 |a Introduction -- Part I Exterior and Differential Forms -- Exterior Forms and the Notion of Divisibility -- Differential Forms -- Dimension Reduction -- Part II Hodge-Morrey Decomposition and Poincaré Lemma -- An Identity Involving Exterior Derivatives and Gaffney Inequality -- The Hodge-Morrey Decomposition -- First-Order Elliptic Systems of Cauchy-Riemann Type -- Poincaré Lemma -- The Equation div u = f -- Part III The Case k = n -- The Case f × g > 0 -- The Case Without  Sign Hypothesis on f -- Part IV The Case 0 ≤ k ≤ n–1 -- General Considerations on the Flow Method -- The Cases k = 0 and k = 1 -- The Case k = 2 -- The Case 3 ≤ k ≤ n–1 -- Part V Hölder Spaces -- Hölder Continuous Functions -- Part VI Appendix -- Necessary Conditions -- An Abstract Fixed Point Theorem -- Degree Theory -- References -- Further Reading -- Notations -- Index. . 
520 |a An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f.  In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ≤ k ≤ n–1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1≤ k ≤ n–1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars. 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Ordinary Differential Equations. 
700 1 |a Dacorogna, Bernard.  |e author. 
700 1 |a Kneuss, Olivier.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817683122 
830 0 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 83 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-8313-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)