The Pullback Equation for Differential Forms

An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f.  In more physical terms, the question under consideration can be seen as a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Csató, Gyula (Συγγραφέας), Dacorogna, Bernard (Συγγραφέας), Kneuss, Olivier (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2012.
Σειρά:Progress in Nonlinear Differential Equations and Their Applications ; 83
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Part I Exterior and Differential Forms
  • Exterior Forms and the Notion of Divisibility
  • Differential Forms
  • Dimension Reduction
  • Part II Hodge-Morrey Decomposition and Poincaré Lemma
  • An Identity Involving Exterior Derivatives and Gaffney Inequality
  • The Hodge-Morrey Decomposition
  • First-Order Elliptic Systems of Cauchy-Riemann Type
  • Poincaré Lemma
  • The Equation div u = f
  • Part III The Case k = n
  • The Case f × g > 0
  • The Case Without  Sign Hypothesis on f
  • Part IV The Case 0 ≤ k ≤ n–1
  • General Considerations on the Flow Method
  • The Cases k = 0 and k = 1
  • The Case k = 2
  • The Case 3 ≤ k ≤ n–1
  • Part V Hölder Spaces
  • Hölder Continuous Functions
  • Part VI Appendix
  • Necessary Conditions
  • An Abstract Fixed Point Theorem
  • Degree Theory
  • References
  • Further Reading
  • Notations
  • Index. .