A Concise Introduction to Linear Algebra

This book offers a refreshingly concise, manageable introduction to linear algebra: Whereas most treatments of the subject give an exhaustive survey supplemented with applications, this book presents a carefully selected array of the most essential topics that can be thoroughly covered in a single s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schay, Géza (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04212nam a22004935i 4500
001 978-0-8176-8325-2
003 DE-He213
005 20151123193958.0
007 cr nn 008mamaa
008 120329s2012 xxu| s |||| 0|eng d
020 |a 9780817683252  |9 978-0-8176-8325-2 
024 7 |a 10.1007/978-0-8176-8325-2  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Schay, Géza.  |e author. 
245 1 2 |a A Concise Introduction to Linear Algebra  |h [electronic resource] /  |c by Géza Schay. 
264 1 |a Boston :  |b Birkhäuser Boston,  |c 2012. 
300 |a XII, 330 p. 50 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- 1 Analytic Geometry of Euclidean Spaces -- 2 Systems of Linear Equations, Matrices -- 3 Vector Spaces and Subspaces -- 4 Linear Transformations -- 5 Orthogonal Projections and Bases -- 6 Determinants -- 7 Eigenvalues and Eigenvectors -- 8 Numerical Methods -- 9 Appendices. 
520 |a This book offers a refreshingly concise, manageable introduction to linear algebra: Whereas most treatments of the subject give an exhaustive survey supplemented with applications, this book presents a carefully selected array of the most essential topics that can be thoroughly covered in a single semester. The exposition generally falls in line with the material recommended by the Linear Algebra Curriculum Study Group, but notably deviates in providing an early emphasis on the geometric foundations of linear algebra.  Starting with vectors, lines, and planes in two and three dimensions gives students a more intuitive understanding of the subject and enables an easier grasp of more abstract concepts.  Two important pedagogical devices are also directed to this end: First, throughout the book, the notation is carefully selected to indicate the connections between related quantities; second, in addition to numbering, brief mnemonic titles are appended to theorems and examples, making it easier for the student to internalize and recall important concepts (e.g., it is much more satisfying to recall the Dimension Theorem than to recall Theorem 3.5.1). The focus throughout is primarily on fundamentals, guiding readers to appreciate the elegance and interconnectedness of linear algebra.  At the same time, the text presents a number of interesting, targeted applications, offering a glimpse of how the subject is used in other fields, especially in physics.  A section on computer graphics and a chapter on numerical methods also provide looks at the potential uses of linear algebra, and most sections contain exercises using MATLAB® to put theory into practice in a variety of contexts.  Visuals and problems are included to enhance and reinforce understanding throughout the book, and both students’ and instructors’ solutions manuals (for non-MATLAB exercises) are available online. A Concise Introduction to Linear Algebra builds on the author's previous title on the subject (Introduction to Linear Algebra, Jones & Bartlett, 1996).  With brevity, precision, and rigor, the work is an ideal choice for a standard one-semester course targeted primarily at math or physics majors.  It is a valuable addition to the book collection of anyone who teaches or studies the subject. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Matrix theory. 
650 0 |a Mathematical physics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817683245 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-8325-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)