Spectral Theory of Operators on Hilbert Spaces

This work is intended to provide a concise introduction to the spectral theory of Hilbert space operators. With an emphasis on detailed proofs and recent aspects of theory, it can serve as a modern textbook for a first graduate course in the subject. The coverage of topics is thorough, exploring var...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kubrusly, Carlos S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03424nam a22004695i 4500
001 978-0-8176-8328-3
003 DE-He213
005 20151204145321.0
007 cr nn 008mamaa
008 120531s2012 xxu| s |||| 0|eng d
020 |a 9780817683283  |9 978-0-8176-8328-3 
024 7 |a 10.1007/978-0-8176-8328-3  |2 doi 
040 |d GrThAP 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.724  |2 23 
100 1 |a Kubrusly, Carlos S.  |e author. 
245 1 0 |a Spectral Theory of Operators on Hilbert Spaces  |h [electronic resource] /  |c by Carlos S. Kubrusly. 
264 1 |a Boston :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a X, 197 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Preliminaries -- Spectrum -- Spectral Theorem -- Functional Calculus -- Fredholm Theory -- References -- Index. 
520 |a This work is intended to provide a concise introduction to the spectral theory of Hilbert space operators. With an emphasis on detailed proofs and recent aspects of theory, it can serve as a modern textbook for a first graduate course in the subject. The coverage of topics is thorough, exploring various intricate points and hidden features often left untreated. The book begins with a primer on Hilbert space theory, summarizing the basics required for the remainder of the book and establishing unified notation and terminology. After this, standard spectral results for (bounded linear) operators on Banach and Hilbert spaces, including the classical partition of the spectrum and spectral properties for specific classes of operators, are discussed. A study of the spectral theorem for normal operators follows, covering both the compact and the general case, and proving both versions of the theorem in full detail. This leads into an investigation of functional calculus for normal operators and Riesz functional calculus, which in turn is followed by Fredholm theory and compact perturbations of the spectrum, where a finer analysis of the spectrum is worked out. Here, further partitions involving the essential spectrum, including the Weyl and Browder spectra, are introduced. The final section of the book deals with Weyl's and Browder's theorems and provides a look at very recent results.  Spectral Theory of Operators on Hilbert Spaces is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will be useful for working mathematicians using spectral theory of Hilbert space operators, as well as for scientists wishing to harness the applications of this theory. 
650 0 |a Mathematics. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Non-associative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817683276 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-8328-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)