Multiple Dirichlet Series, L-functions and Automorphic Forms

Multiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics.  As...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bump, Daniel (Επιμελητής έκδοσης), Friedberg, Solomon (Επιμελητής έκδοσης), Goldfeld, Dorian (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Σειρά:Progress in Mathematics ; 300
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03808nam a22005895i 4500
001 978-0-8176-8334-4
003 DE-He213
005 20151103121533.0
007 cr nn 008mamaa
008 120707s2012 xxu| s |||| 0|eng d
020 |a 9780817683344  |9 978-0-8176-8334-4 
024 7 |a 10.1007/978-0-8176-8334-4  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
245 1 0 |a Multiple Dirichlet Series, L-functions and Automorphic Forms  |h [electronic resource] /  |c edited by Daniel Bump, Solomon Friedberg, Dorian Goldfeld. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a VIII, 361 p. 78 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics ;  |v 300 
505 0 |a Preface -- Introduction: Multiple Dirichlet Series -- A Crystal Description for Symplectic Multiple Dirichlet Series -- Metaplectic Whittaker Functions and Crystals of Type B -- Metaplectic Ice -- Littelmann patterns and Weyl Group Multiple Dirichlet Series of Type D -- Toroidal Automorphic Forms, Waldspurger Periods and Double Dirichlet Series -- Natural Boundaries and Integral Moments of L-functions.-  A Trace Formula of Special Values of Automorphic L-functions -- The Adjoint L-function of SU(2,1) -- Symplectic Ice -- On Witten Multiple Zeta-Functions Associated with Semisimple Lie Algebras III -- A Pseudo Twin-Prime Theorem -- Principal Series Representations of Metaplectic Groups over Local Fields -- Two-Dimensional Adelic Analysis and Cuspidal Automorphic Representations of GL(2). 
520 |a Multiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics.  As such, it represents a new way in which areas including number theory, combinatorics, statistical mechanics, and quantum groups are seen to fit together.  The volume also includes papers on automorphic forms and L-functions and related number-theoretic topics.  This volume will be a valuable resource for graduate students and researchers in number theory, combinatorics, representation theory, mathematical physics, and special functions. Contributors: J. Beineke, B. Brubaker, D. Bump, G. Chinta, G. Cornelissen, C.A. Diaconu, S. Frechette, S. Friedberg, P. Garrett, D. Goldfeld, P.E. Gunnells, B. Heim, J. Hundley, D. Ivanov, Y. Komori, A.V. Kontorovich, O. Lorscheid, K. Matsumoto, P.J. McNamara, S.J. Patterson, M. Suzuki, H. Tsumura. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Special functions. 
650 0 |a Number theory. 
650 0 |a Combinatorics. 
650 0 |a Mathematical physics. 
650 0 |a Quantum field theory. 
650 0 |a String theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Special Functions. 
650 2 4 |a Quantum Field Theories, String Theory. 
700 1 |a Bump, Daniel.  |e editor. 
700 1 |a Friedberg, Solomon.  |e editor. 
700 1 |a Goldfeld, Dorian.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817683337 
830 0 |a Progress in Mathematics ;  |v 300 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-8334-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)