Singularities of Differentiable Maps, Volume 1 Classification of Critical Points, Caustics and Wave Fronts /

Originally published in the 1980s, Singularities of Differentiable Maps: The Classification of Critical Points, Caustics and Wave Fronts was the first of two volumes that together formed a translation of the authors' influential Russian monograph on singularity theory.  This uncorrected softcov...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Arnold, V.I (Συγγραφέας), Gusein-Zade, S.M (Συγγραφέας), Varchenko, A.N (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Σειρά:Modern Birkhäuser Classics
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04785nam a22006255i 4500
001 978-0-8176-8340-5
003 DE-He213
005 20151125192651.0
007 cr nn 008mamaa
008 120523s2012 xxu| s |||| 0|eng d
020 |a 9780817683405  |9 978-0-8176-8340-5 
024 7 |a 10.1007/978-0-8176-8340-5  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Arnold, V.I.  |e author. 
245 1 0 |a Singularities of Differentiable Maps, Volume 1  |h [electronic resource] :  |b Classification of Critical Points, Caustics and Wave Fronts /  |c by V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko. 
264 1 |a Boston :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a XII, 282 p. 67 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modern Birkhäuser Classics 
505 0 |a Part I. Basic concepts -- The simplest examples -- The classes Sigma^ I -- The quadratic differential of a map -- The local algebra of a map and the Weierstrass preparation theorem -- The local multiplicity of a holomorphic map -- Stability and infinitesimal stability -- The proof of the stability theorem -- Versal deformations -- The classification of stable germs by genotype -- Review of further results -- Part II. Critical points of smooth functions -- A start to the classification of critical points -- Quasihomogeneous and semiquasihomogeneous singularities -- The classification of quasihomogeneous functions -- Spectral sequences for the reduction to normal forms -- Lists of singularities -- The determinator of singularities -- Real, symmetric and boundary singularities -- Part III. Singularities of caustics and wave fronts -- Lagrangian singularities -- Generating families -- Legendrian singularities -- The classification of Lagrangian and Legendrian singularities -- The bifurcation of caustics and wave fronts -- References -- Further references -- Subject Index. 
520 |a Originally published in the 1980s, Singularities of Differentiable Maps: The Classification of Critical Points, Caustics and Wave Fronts was the first of two volumes that together formed a translation of the authors' influential Russian monograph on singularity theory.  This uncorrected softcover reprint of the work brings its still-relevant content back into the literature, making it available—and affordable—to a global audience of researchers and practitioners. Singularity theory is a far-reaching extension of maxima and minima investigations of differentiable functions, with implications for many different areas of mathematics, engineering (catastrophe theory and the theory of bifurcations), and science.  The three parts of this first volume deal with the stability problem for smooth mappings, critical points of smooth functions, and caustics and wave front singularities.  Building on these concepts, the second volume (Monodromy and Asymptotics of Integrals) describes the topological and algebro-geometrical aspects of the theory, including monodromy, intersection forms, oscillatory integrals, asymptotics, and mixed Hodge structures of singularities. Singularities of Differentiable Maps: The Classification of Critical Points, Caustics and Wave Fronts accommodates the needs of non-mathematicians, presupposing a limited mathematical background and beginning at an elementary level.  With this foundation, the book's sophisticated development permits readers to explore an unparalleled breadth of applications. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Differential geometry. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Applications of Mathematics. 
700 1 |a Gusein-Zade, S.M.  |e author. 
700 1 |a Varchenko, A.N.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817683399 
830 0 |a Modern Birkhäuser Classics 
856 4 0 |u http://dx.doi.org/10.1007/978-0-8176-8340-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)