Singularities of Differentiable Maps, Volume 2 Monodromy and Asymptotics of Integrals /

Originally published in the 1980s, Singularities of Differentiable Maps: Monodromy and Asymptotics of Integrals was the second of two volumes that together formed a translation of the authors' influential Russian monograph on singularity theory.  This uncorrected softcover reprint of the work b...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Arnold, V.I (Συγγραφέας), Gusein-Zade, S.M (Συγγραφέας), Varchenko, A.N (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston : Birkhäuser Boston : Imprint: Birkhäuser, 2012.
Σειρά:Modern Birkhäuser Classics
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I. The topological structure of isolated critical points of functions
  • Introduction
  • Elements of the theory of Picard-Lefschetz
  • The topology of the non-singular level set and the variation operator of a singularity
  • The bifurcation sets and the monodromy group of a singularity
  • The intersection matrices of singularities of functions of two variables
  • The intersection forms of boundary singularities and the topology of complete intersections
  • Part II. Oscillatory integrals
  • Discussion of results
  • Elementary integrals and the resolution of singularities of the phase
  • Asymptotics and Newton polyhedra
  • The singular index, examples
  • Part III. Integrals of holomorphic forms over vanishing cycles
  • The simplest properties of the integrals
  • Complex oscillatory integrals
  • Integrals and differential equations
  • The coefficients of series expansions of integrals, the weighted and Hodge filtrations and the spectrum of a critical point
  • The mixed Hodge structure of an isolated critical point of a holomorphic function
  • The period map and the intersection form
  • References
  • Subject Index.